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Abstract We present methods and tools for modeling

autonomously controlled production networks and inves-

tigation of their stability properties. Production networks

are described as interconnected dynamical systems of two

types: systems of ordinary differential equations and time-

delay systems. In particular with the help of time-delays,

we incorporate transportation times and implement an

autonomous control method, namely the queue length

estimator. By stability, we mean roughly speaking,

boundedness of the state of a system (e.g., the inventory

level or the work in progress) over the time under bounded

external inputs. In our stability analysis, we consider the

case, when all the subsystems describing logistics locations

are stable. We derive sufficient conditions that guarantee

stability of the network. To this end, we utilize Lyapunov

functions and a small gain condition.

Keywords Production networks � Modeling �
Stability analysis � Lyapunov functions

1 Introduction

Production, supply networks, and other logistic structures

are typical examples of complex systems with a nonlinear

and sometimes chaotic dynamics. Their dynamics is sub-

ject to different perturbations due to changes on market,

changes in customer behavior, information and transport

congestions, unreliable elements of the network etc. One of

the approaches to handle such complex systems is to shift

from centralized to decentralized or autonomous control,

i.e., to allow the entities of a network to make their own

decisions based on some given rules and available local

information [29, 30]. However, a system emerging in this

way can become unstable and hence be not effective

according to the logistic performance.

Typical examples of unstable behavior are unbounded

growth of unsatisfied orders or unbounded growth of the

queue of the workload to be processed by a machine. This

causes a loss of customers and high inventory costs,

respectively. To avoid instability of a network, one needs

to investigate its behavior in advance. Mathematical

modeling and analysis provide helpful tools for design,

optimization, and control of such networks and for deeper

understanding of their dynamical properties.

1.1 Production networks

The term production network is used to describe company

or cross-company-owned networks with geographically

dispersed plants. The primary objective of production

networks is to achieve economies of scale through joint

planning of production processes, a mutual use of common

resources, and integrated planning of value added pro-

cesses [28]. These types of networks can react quickly to

perturbations due to redundancies of common resources.
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But high flexibility causes interdependencies between

production processes in different plants, e.g., allocation

problems for products or planning of transports and

transport capacity [1, 18]. Therefore, production planning

and control (PPC) of production networks has to cover

these tasks and also has to provide methods for an inte-

grated planning and synchronization within the network,

including planning of sales and inventory [28]. Under

highly dynamic and complex conditions current PPC

methods cannot cope with disturbances or unforeseen

events in an appropriate manner [15]. This can cause

uncertainties of lead times or unsteadiness of schedules,

and it can also lead to instability.

1.2 Autonomous control

The main idea of autonomous cooperating logistic pro-

cesses is to enable intelligent logistic objects to route

themselves through a logistic network according to their

own objectives and to make and execute decisions, based

on local information [29, 30]. In this context, intelligent

logistic objects can be physical or material objects (e.g.,

parts or machines) as well as immaterial objects (e.g.,

production orders, information). It has already been shown

that different autonomous control methods can help to

increase the logistics performance and robustness of single

production systems [19, 21]. Due to the high structural and

dynamical complexity of production networks, one can

expect that autonomous control has a positive effect on the

dynamical behavior of these networks. This was confirmed

by investigations of the performance of autonomously

controlled production networks [20]. On the other hand,

autonomously controlled production networks can show a

sudden change of the dynamical systems behavior in

dependence of varying start parameters and the logistics

performance collapses in the sense of unpredictable and

increasing throughput times and growing inventory [22].

Thus, investigations of autonomously controlled produc-

tion networks stability are essential to identify such turning

points of dynamical systems behavior.

The autonomous control to be modeled and used in this

contribution is based on the queue length estimator (QLE),

which was investigated in previous papers together with

other existing autonomous control methods [2, 21, 23]. The

QLE enables parts to choose the next transportation way to

an entity of the network according to the local information

about their current amount of the queuing workload.

1.3 Mathematical modeling and stability analysis

Roughly speaking, for production networks stability means

that the state of the network remains bounded over time

under bounded external inputs.

The state of the system is the set of variables that

determines the evolution of the system (if the external

inputs are given). In this contribution, we will consider the

state of the system as the number of unprocessed parts,

which is the sum of the queue length and the work in

progress (WIP).

Thus, stable behavior of the network is decisive for the

performance and vitality of a network. To design stable

logistic networks, we are going to apply tools from math-

ematical systems theory. In this context, mathematical

models describing network’s behavior are needed.

For manufacturing systems, parameters assuring stable

behavior can be found by using different models: fluid

models [4], re-entrant lines [5], or manufacturing systems

with different job types [6]. An approach with flows of

multiple fluids was used to analyze the stability region of an

autonomously controlled shop floor scenario [24]. Scholz-

Reiter et al. [25] presented a fluid model of a production

network and obtained a stability region for a scenario with

two locations and three types of products. First approaches

have already been done to derive stability conditions of

autonomously controlled production networks [7].

In this contribution, a production network is described as

an interconnection of many dynamical subsystems that

model logistic locations. To cope with different dynamical

characteristics of the network, we develop two types of

models: systems, based on ordinary differential equations

(ODEs) and time-delay systems. Time-delay systems are

described by functional differential equations and take

transportation times into account in contrast to models,

based on ODEs. Both models describe continuous material

flows in the production network. The QLE is implemented

in both types of models.

We study input-to-state stability [26] of production net-

works. Our stability analysis is based on the Lyapunov func-

tion theory and small-gain theorems. We divide the analysis in

several steps: at the first step, we describe the network’s

behavior by a mathematical model according to the type of its

dynamics. Then, we are looking for Lyapunov functions and

the corresponding Lyapunov gains to establish stability of

each subsystem. If all subsystems are stable, then we apply the

so-called small-gain condition that takes into account the

interconnection structure of the network. If this condition is

satisfied, then the stability of the network is proved; otherwise,

we cannot conclude whether the network is stable or not. But

we can repeat the stability analysis choosing another Lyapu-

nov function candidate and/or gains. Note that the choices of a

Lyapunov function candidate and the gains are rather heu-

ristic. This framework is described in Fig. 1. Note that we

provide only sufficient conditions for stability of a network.

This procedure can be applied to general nonlinear large-

scale systems to perform a stability analysis and to derive

bounds for parameters of a logistic system for which its
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behavior is stable. These bounds can be used during the design

and management of production networks to achieve stable

behavior.

The structure of the contribution is as follows. In Sect. 2,

we give the necessary notions of the dynamical systems

and review the stability results for them, namely ODE

systems are considered in Sect. 2.1 and time-delay systems

in Sect. 2.2. These results will be used in Sect. 3 for

modeling and analyzing the behavior of logistics networks

with and without time-delays. The application will be

supplemented by numerical simulations in Matlab for a

certain scenario of a production network in Sect. 4. Section

5 concludes the contribution and outlines some approaches

for the future work.

2 Modeling methods and mathematical stability theory

In this section, we introduce two different methods to model

dynamical networks, such as production networks. Further-

more, the stability theory for these methods is presented.

2.1 Ordinary differential equations

One possibility to model production networks is ordinary

differential equations (ODEs), see for example [14]. ODEs

describe the evolution of the state of the system with contin-

uous time t 2 Rþ, where Rþ :¼ ½0;1Þ.
By xT we denote the transposition of a vector x 2 R

n;

n 2 N. R
n
þ denotes the positive orthant x 2 R

n : x� 0f g

where we use the standard partial order for x; y 2 R
n

given by

x� y , xi � yi; i ¼ 1; . . .; n and xly , 9i : xi\yi:

To handle the external inputs of the system, we use ODE

with inputs of the form

_xðtÞ ¼ f ðxðtÞ; uðtÞÞ; t 2 Rþ; ð1Þ

where xðtÞ 2 R
N denotes the state of the system at time t; u

is the essentially bounded measurable external input,

i.e., u 2 L1ðRþ;R
MÞ and f : RN � R

M ! R
N describes

the system dynamics. The norm in the space L1ðRþ;R
MÞ

is given by uk k1:¼ess supt2 0;1½ Þ uðtÞj j, where �j j denotes

the Euclidean norm.

To have existence and uniqueness of a solution of a

system of the form (1), the function f is assumed to be a

locally Lipschitz continuous function. The solution is

denoted by x (t; x0, u) or x (t) for short, where x0 is the

initial condition at time t = 0.

In general, production networks consist of n 2 N inter-

connected systems of the form

_xiðtÞ ¼ fiðx1ðtÞ; . . .; xnðtÞ; uiðtÞÞ; t 2 Rþ; i ¼ 1; . . .; n;

ð2Þ

where xi 2 R
Ni ; ui 2 R

Mi and fi : R
Pn

j¼1
NjþMi ! R

Ni are

locally Lipschitz continuous functions. Here, xj; j 6¼ i can

be interpreted as internal inputs of the i-th subsystem, and

the solution is denoted by xi (t; xi
0, xj, j = i, ui) or xi(t) for

short, where xi
0 is the initial condition at time t = 0.

If we define N :¼
Pn

i¼1 Ni; M :¼
Pn

i¼1 Mi; x :¼
ðxT

1 ; . . .; xT
n Þ

T ; u :¼ ðuT
1 ; . . .; uT

n Þ
T

and f ¼ ðf T
1 ; . . .; f T

n Þ
T
,

then the interconnected system of the form (2) can be

written as one single system of the form (1), which we call

the whole system.

The purpose of this paper is to analyze production net-

works, which can be written in the form (2), in view of

stability.

Definition 1 For the stability analysis, the following

classes of functions are useful:

P :¼ f : Rn ! Rþ f ð0Þ ¼ 0; f ðxÞ[ 0; x 6¼ 0jf g;
K :¼ c : Rþ ! Rþ c is continuous,jf

cð0Þ ¼ 0 and strictly increasingg;
K1 :¼ c 2 K c is unboundedjf g;
L :¼ c : Rþ ! Rþ c is continuous and strictlyjf

decreasing with limt!1 cðtÞ ¼ 0g;
KL :¼ b : Rþ � Rþ ! Rþ b is continuous,jf

bð�; tÞ 2 K; 8t� 0; bðr; �Þ 2 L; 8r [ 0g:

We will call functions of class P positive definite.

Fig. 1 Scheme of the stability analysis procedure
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In the rest of the paper, by x, y [ 0, we mean that x [ 0

and y [ 0 holds. Now, we introduce the following stability

notion:

Definition 2

1. System (1) is called locally input-to-state stable (LISS)

if there exist constants q; qu [ 0 and functions

b 2 KL; c 2 K such that for all initial values

x0j j � q and all inputs u 2 L1ðRþ;R
MÞ: uk k1 � qu

the inequality

xðtÞj j � max b x0j j; tð Þ; c uk k1
� �� �

is satisfied for all t 2 Rþ. Function c is called (non-

linear) gain.

2. The i-th subsystem of (2) is called LISS if there exist

constants qi; qij; qu
i [ 0 and functions cij; ci 2 K

and bi 2 KL such that for all initial values x0
i

�
�
�
�� qi

and all inputs xj

�
�
�
�
1 � qij; uik k1 � qu

i the inequality

xiðtÞj j � max bi x0
i

�
�
�
�; t

� �
;max

j6¼i
cij xj

�
�
�
�
1

� 	
; ci uik k1
� �


 �

is satisfied for all t 2 Rþ. cij and ci are called (nonlinear)

gains.

Note that, if q; qu ¼ 1, then the system (1) is called

(globally) ISS and if qi; qij; q
u
i ¼ 1, then the i-th subsys-

tem of (2) is called (globally) ISS.

In particular, LISS (for x0
i

�
�
�
��qi; xj

�
�
�
�
1�qij; uik k1�qu

i )

and ISS (for all initial values and external and internal

inputs) guarantee that the norm of the trajectories of each

subsystem is bounded.

An important tool to verify LISS and ISS, respectively,

of a system of the form (2) are Lyapunov functions.

Definition 3 We assume that for each subsystem of

the interconnected system (1) there exists a function

Vi : R
Ni ! Rþ, which is locally Lipschitz continuous and

positive definite. Then, for i ¼ 1; . . .; n the function Vi is

called a LISS Lyapunov function of the i - th subsystem of

(2) if Vi satisfies the following two conditions: There exist

functions w1i; w2i 2 K1 such that

w1i xij jð Þ�ViðxiÞ�w2i xij jð Þ; 8 xi 2 R
Ni ð3Þ

and there exist cij; ci 2 K, a positive definite function li

and constants qi; qij; qu
i [ 0 such that

ViðxiÞ� max max
j6¼i

cij VjðxjÞ
� �

; ci uij jð Þ

 �

) rViðxiÞ � fiðx; uÞ� � li ViðxiÞð Þ ð4Þ

for almost all xi 2 R
Ni ; x0

i

�
�
�
�� qi; xj

�
�
�
�� qij; ui 2 R

Mi ;

uij j � qu
i ; cii ¼ 0, where r denotes the gradient of the

function Vi. Functions cij are called LISS Lyapunov gains.

Note that, if qi; qij; q
u
i ¼ 1, then the LISS Lyapunov

function of the i-th subsystem becomes an ISS Lyapu-

nov function of the i-th subsystem (see [12]). In general,

the LISS Lyapunov gains differ from the gains in Defini-

tion 2.

The condition (3) means that Vi is positive definite and

radially unbounded. Function Vi can be interpreted as the

‘‘energy’’ of the system. The condition (4) means that

outside of the region fxi : ViðxiÞ\ max maxj 6¼i cij VjðxjÞ
� �

;
�

ci uij jð Þgg the ‘‘energy’’ of the system is decreasing. In

particular, for every given external and internal inputs with

finite norms, the energy of the system is bounded, which

implies, by (3), that also the trajectory of the i-th subsystem

remains bounded for all time t [ 0.

Furthermore, we define the gain-matrix C :¼ ðcijÞn�n;

i; j ¼ 1; . . .; n; cii ¼ 0, which defines a map C :Rn
þ !R

n
þ

by

C sð Þ :¼ max
j

c1jðsjÞ; . . .;max
j

cnjðsjÞ
� T

; s 2 R
n
þ: ð5Þ

Note that the matrix C describes in particular the inter-

connection structure of the network; moreover, it contains

the information about the mutual influence between the

subsystems, which can be used to verify the (L)ISS prop-

erty of networks.

Definition 4 C satisfies the local small gain condition

(LSGC) on 0;w�½ �, provided that

Cðw�Þ\w� and CðsÞls; 8s 2 0;w�½ �; s 6¼ 0: ð6Þ

Notation l denotes that there is at least one component

i 2 1; . . .; nf g such that CðsÞi\si.

To check whether the interconnected system of the form

(1) possesses the LISS property, we use the scheme in

Fig. 1. To this end, one has to find a LISS Lyapunov

function for each subsystem. If there exists a LISS

Lyapunov function for each subsystem, then this subsystem

possesses the LISS property. Furthermore, if the LISS

Lyapunov gains satisfy the local small-gain condition, then

the whole system of the form (1) is LISS, which we recall

in the following theorem (see [11]):

Theorem 1 Consider the interconnected system (2),

where each subsystem has an LISS Lyapunov function Vi. If

the corresponding gain-matrix C satisfies the local small-

gain condition (6), then there exist constants q, qu [ 0

such that the whole system of the form (1) is LISS.

In [10], a similar ISS small-gain theorem for general

networks was proved, where the small-gain condition is of

the form

CðsÞls; 8 s 2 R
n
þn 0f g:
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2.2 Time-delay systems

In this section, we introduce systems with time-delays that

allow modeling of transportation times in logistic net-

works: material leaves one production location at time t

and reaches the following location at time t ? h, where

h[ 0 is the transportation time between these two pro-

duction locations. Time-delay systems are described by

differential equations of the form

_xðtÞ ¼ f ðxt; uÞ: ð7Þ

Here, the term xt :s 7!xðtþsÞ; s2½�h;0�;xt2Cð½�h;0�; RNÞ
represents the state of the system at time t, where

Cð½�h;0�;RNÞ denotes the space of continuous functions

defined on [-h, 0] equipped with the norm xtk k½�h;0�:¼
sups2½�h;0� xðtþsÞj j and values in R

N . In (7), u is again an

external input, f :Cð½�h;0�;RNÞ�R
M!R

N describes the

dynamics of the system that is now dependent also on the

previous values of the function x.

In other words, the state of the time-delay system at the

time t is the set of values of the function x in the period

[t - h, t], and h can be interpreted as the maximal involved

delay. We assume that the conditions for the existence and

uniqueness of a solution of (7) are satisfied. Let the initial

state be given by the function n 2 Cð½�h; 0�;RNÞ.
The stability notions introduced in the previous section

can be defined for time-delay systems as well:

Definition 5 System (7) is called LISS if there exist

constants q, qu [ 0 and functions b 2 KL and c 2 K

such that for every initial condition nk k �h;0½ � � q, every

external input uk k1 � qu and for all t 2 Rþ, it holds that

xðtÞj j � max b nk k �h;0½ �; t
� 	

; c uk k1
� �n o

; ð8Þ

where n 2 Cð �h; 0½ �;RNÞ.

Remark 1 An equivalent definition of LISS of time-delay

systems can be obtained by replacing the inequality (8) in

Definition 2 by the inequality

xtk k½�h;0� � max b nk k �h;0½ �; t
� 	

; c uk k1
� �n o

: ð9Þ

Really, if the system (7) is LISS in the form (9), then

it is LISS according to Definition 2, because of

jxðtÞj � xtk k½�h;0�.

In the other direction, if (7) is LISS according to the

Definition 2, then there exist q; qu [ 0; b 2 KL and

c 2 K such that for every initial condition nk k �h;0½ � � q,

every external input uk k1 � qu and for all t [ h it holds

xtk k½�h;0� ¼ sup
s2½�h;0�

xðt þ sÞj j

� max sup
s2½�h;0�

b nk k �h;0½ �; t þ s
� 	

; c uk k1
� �

( )

¼ max b nk k �h;0½ �; t � h
� 	

; c uk k1
� �n o

:

For t 2 ½0; h� it holds xtk k½�h;0� � max b nk k �h;0½ �; 0
� 	

;
n

c uk k1
� �

g. Now define for all r C 0, t C 0 the function

~bðr; tÞ ¼ bðr; t � hÞ; t [ h
ðh � tÞ þ bðr; 0Þ; t 2 ½0; h�:




One can simply check that ~b 2 KL. Now, for every initial

condition nk k �h;0½ � � q, every external input uk k1 � qu and

for all t [ 0 it holds

xtk k½�h;0� � max ~b nk k �h;0½ �; t
� 	

; c uk k1
� �n o

;

therefore the system (7) is LISS also in the form (9).

If we consider n interconnected systems, then we write

each subsystem as

_xiðtÞ ¼ fi xt
1; . . .; xt

n; uiðtÞ
� �

; ð10Þ

where xt
j :¼ xjðt þ sÞ; s 2 ½�h; 0� can be interpreted as

internal input of the i-th subsystem, i ¼ 1; . . .; n. The initial

functions are given by ni 2 Cð½�h; 0�;RNiÞ. Again, this

network can be written in the form (7). The notion of LISS

for interconnected time-delay systems is as follows:

Definition 6 The i-th subsystem of (10) is called LISS if

there exist constants qi; qij; qu
i [ 0 and functions bi 2 KL

and cd
ij; c

u
i 2 K; i; j ¼ 1; . . .; n; i 6¼ j such that for initial

functions nik k½�h;0� � qi, for inputs xj

�
�
�
�

�h;1½ Þ � qij;

uik k1 � qu
i and for all t 2 Rþ it holds

xiðtÞj j � max bi nik k �h;0½ �; t
� 	

;max
j 6¼i

cd
ij xj

�
�
�
�

�h;1½ Þ

� 	
;




cu
i uk k1
� ��

; ð11Þ

where xj

�
�
�
�

�h;1½ Þ:¼ supt2 �h;1½ Þ xjðtÞ
�
�

�
�.

As in the delay-free case, Lyapunov functions are a

useful tool to investigate stability of systems with time-

delays, where one can use Lyapunov–Razumikhin func-

tions or Lyapunov–Krasovskii functionals (see [17, 27]). In

this paper, we only use Lyapunov–Razumikhin functions

for the stability analysis. An approach by the help of

Lyapunov–Krasovskii functionals can be found in [17] and

[9]. The existence of an ISS Lyapunov–Razumikhin func-

tion implies ISS for systems of the form (7). This was
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shown in [27] and can be transferred to LISS in a similar

way. For the definition of LISS Lyapunov–Razumikhin

functions, we introduce the upper right-hand side deriv-

ative of a locally Lipschitz continuous function

V : RN ! Rþ along the solution x(t), which is defined by

DþVðxðtÞÞ ¼ lim sup
h!0þ

Vðxðt þ hÞÞ � VðxðtÞÞ
h

:

For interconnected time-delay systems, the LISS

Lyapunov–Razumikhin functions are defined in the

following way:

Definition 7 We assume that for each subsystem of the

interconnected system (10) there exists a function

Vi : R
Ni ! Rþ, which is locally Lipschitz continuous and

positive definite. Then, for i ¼ 1; . . .; n the function Vi is

called an LISS Lyapunov-Razumikhin function for the i-th

subsystem of (10) if there exist constants qi; qij; qu
i [ 0

and functions bi 2 KL; cd
ij; c

u
i 2 K [ f0g; li 2 K;

i; j ¼ 1; . . .; n such that

w1i xij jð Þ�ViðxiÞ�w2ið xij jÞ; 8xi 2 R
Ni ; ð12Þ

ViðxiÞ� max max
j

cd
ij jjVd

j ðxjÞjj
� 	

; cu
i uj jð Þ


 �

) DþViðxiÞ� � liðViðxiÞÞ ð13Þ

for all initial functions nik k½�h;0� � qi, for all inputs

xj

�
�
�
�� qij; uij j � qu

i and for all t 2 Rþ, where Vd
j ðxjðtÞÞ :¼

Vjðxjðt þ sÞÞ; s 2 �h; 0½ � and jjVd
j ðxjÞjj :¼ maxt�h� s� t

VjðxjðsÞÞ
�
�

�
�.

Furthermore, we define the gain-matrix for time-delay

systems by C :¼ ðcd
ijÞn�n and the map C : Rn

þ ! R
n
þ by

CðsÞ :¼ max
j

cd
1jðsjÞ; . . .;max

j
cd

njðsjÞ
� T

; s 2 R
n
þ:

With help of the following theorem, we can check

whether an interconnected system with time-delays is

LISS.

Theorem 2 Consider the interconnected system (10),

where each subsystem has a LISS Lyapunov-Razumikhin

function Vi. If the corresponding gain-operator C satisfies

the local small-gain condition from Definition 1, then there

exist constants q, qu [ 0 such that the whole system of the

form (7) is LISS.

This follows from Theorem 1 in [9] with the corre-

sponding changes according to the LISS property.

Theorems 1 and 2 will be used in the following section

for a stability analysis of production networks.

3 Modeling and stability analysis of production

networks

In this section, we model general production networks and

perform a stability analysis, where the methods and tools

presented in the previous section are used. We will derive a

sufficient condition, which guarantees stability of a general

network.

3.1 Description and modeling of a general production

network

We consider a production network, consisting of n market

entities, which can be raw material suppliers (e.g.,

extracting or agricultural companies), producers, distribu-

tors, and consumers, for example. Each entity is understood

as a subsystem of the whole network. For simplicity, we

assume that there is only one unified type of material, i.e.,

all primary products, used in the production network, can

be measured as a number of units of this unified material.

The state of the i-th subsystem at time t 2 Rþ is the

quantity of unprocessed material within the i-th subsystem

at time t. It will be denoted by xi(t). The state of the whole

network at time t is denoted by xðtÞ ¼ ðx1ðtÞ; . . .; xnðtÞÞT
. A

subsystem can get material from an external source, which

is denoted by ui, and from subsystems of the network

(internal inputs).

3.1.1 Modeling without time-delays

At first, we consider a production network without trans-

portation times and use ordinary differential equations to

model it. Let the i-th subsystem processes the raw material

from its inventory with rate ~fiiðt; xðtÞÞ� 0 and sends the

produced goods (measured in units of unified material) to

the j-th subsystem with rate ~fjiðt; xðtÞÞ. Thus, the total rate

of the distribution from the i-th subsystem to other sub-

systems is
Pn

j¼1
~fjiðt; xðtÞÞ and the rest is sent to some

customers not considered in the network.

For general functions ~fji it is hard to derive stability

conditions. Therefore, we will investigate the special case
~fjiðt; xðtÞÞ ¼ cjiðxðtÞÞ~fiðxiðtÞÞ; cjiðxÞ 2 Rþ and ~fiiðt; xðtÞÞ ¼
~ciiðxðtÞÞ~fiðxiðtÞÞ; ~ciiðxÞ 2 Rþ, where ~fiðxiðtÞÞ 2 K is pro-

portional to the processing rate of the system, cjiðxðtÞÞ;
i 6¼ j are some positive distribution coefficients and

~ciiðxðtÞÞ� 0. We interpret the constant distribution coeffi-

cients as central planning, and on the other hand, variable

distribution coefficients can be used for some autonomous

control method, e.g., the QLE.
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Under these assumptions, the dynamics of the i-th sub-

system is described by ordinary differential equations

as in (2):

_xiðtÞ ¼
Xn

j¼1;j 6¼i

cijðxðtÞÞ~fjðxjðtÞÞ þ uiðtÞ � ~ciiðxðtÞÞ~fiðxiðtÞÞ;

i ¼ 1; . . .; n: ð14Þ

Denoting cii :¼ �~cii we rewrite the above equations in a

vector form as an interconnected system of the form (1)

_xðtÞ ¼ CðxðtÞÞ~f ðxðtÞÞ þ uðtÞ; ð15Þ

where ~f ðxðtÞÞ ¼ ð~f1ðx1ðtÞÞ; . . .; ~fnðxnðtÞÞÞT ; uðtÞ ¼ ðu1ðtÞ; . . .;
unðtÞÞT

and CðxÞ 2R
n�n.

This model will be used in the next subsection for a

stability analysis of general production networks.

3.1.2 Modeling with time-delays

Now, we model general production networks with trans-

portation times using time-delay systems. The time needed

for the transportation of material from the j-th to the i-th

entity is denoted by sij 2 Rþ. Then, the dynamics of the i-

th subsystem can be described by retarded differential

equations similar to (14):

_xiðtÞ ¼
Xn

j¼1;j 6¼i

cijðxðtÞÞ~fjðxjðt � sijÞÞ

þ uiðtÞ � ~ciiðxðtÞÞ~fiðxiðtÞÞ; i ¼ 1; . . .; n: ð16Þ

Here, the external input and the processing rate do not

depend on any time-delay, but the internal inputs from

other subsystems do, represented by the terms cijðxðtÞÞ
~fjðxjðt � sijÞÞ. This means that the input of subsystem i at

time t from subsystem j is the amount of material that was sent

by the j-th subsystem at the time t - sij. The terms cij(x(t)) can

also depend on xj(t - sij), but we write cij(x(t)) for short.

In the next subsection, we perform a stability analysis

for such systems, where we use the Lyapunov–Razumikhin

approach.

3.2 Stability analysis

For the stability analysis, we apply the framework shown in

Fig. 1. This framework is based on the result of Theorem 2. At

first, we model the production network using ODEs. Then, we

look for the ISS-Lyapunov function for each subsystem

described in (14). To this end, we iteratively choose some

candidate to be ISS-Lyapunov function and the corresponding

Lyapunov gains and check whether the conditions on an ISS

Lyapunov function are satisfied. If an ISS-Lyapunov function

is found, then we verify the small-gain condition. If it is sat-

isfied, then Theorem 2 is applied to establish ISS.

3.2.1 Stability analysis of production networks modeled

without time-delays

At first, we consider the case ~fi 2 K1; i ¼ 1; . . .; n, in

particular ~fi are unbounded. Later, we will show how the

same method can be applied with minimal modifications

for bounded ~fi 2 K nK1.

Note that the conditions ~fi 2 K1, for all x [ 0

cii(x) \ 0 and cijðxÞ� 0; i 6¼ j imply that if x(0) C 0 (that

is xi(0) C 0 for all i ¼ 1; . . .; n) and u(t) C 0, for all t [ 0,

then x(t) C 0 for all t [ 0.

Thus, R
n
þ ¼ ½0;1Þn

is invariant under the flow of

internal and external inputs (if the external inputs are

positive). One can perform the following analysis and

prove the results in R
n. Since we are interested in the

stability analysis of production networks, it is enough to

perform the analysis in this paper in R
n
þ.

There are many candidates to be ISS-Lyapunov func-

tions. We consider the one that is easy to check, i.e.,

Vi(xi) = |xi| = xi for the i-th entity. Obviously, Vi(xi)

satisfies the condition (3). To prove that the condition

(4) holds, we choose 8s 2 Rþ the functions cij; ci; li

(see Definition 3) as

cijðsÞ :¼ ~f�1
i

ai

aj

1

1 þ dj

~fjðsÞ
� 

; ciðsÞ :¼ ~f�1
i

1

ri
s

� 

; ð17Þ

where dj; aj; j ¼ 1; . . .; n and ri are positive reals. It

follows from (17) that

xi � cij xj

� �
) ~fjðxjÞ�

aj

ai
ð1 þ djÞ~fiðxiÞ;

xi � ci uij jð Þ ) juij � ri
~fiðxiÞ:

Using the inequalities from the right-hand side of the

implications above and assuming that the following

condition holds 8s 2 R
n
þ; for some hi > 0;

Xn

j¼1;j6¼i

cijðxÞ
aj

ai
ð1 þ djÞ þ ciiðxÞ þ ri � � hi; ð18Þ

we obtain that for all xi 2 Rþ : ViðxiÞ� max maxj 6¼i cij

�

VjðxjÞ
� �

; ci uij jð Þg (compare with (4)) it holds

dViðxiðtÞÞ
dt

¼
Xn

j¼1

cijðxðtÞÞ~fjðxjðtÞÞ þ uiðtÞ

�
Xn

j¼1;j 6¼i

cijðxðtÞÞ
aj

ai
ð1 þ djÞ þ ciiðxðtÞÞ þ ri

 !

~fi xiðtÞð Þ� � liðViðxiðtÞÞÞ;

where liðrÞ :¼ hi
~fiðrÞ; r 2 Rþ and thereby condition (4) is

satisfied. Thus, under the condition (18), Vi(xi) = |xi| is an
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ISS Lyapunov function for the i-th entity with the gains,

given by (17).

To check whether the interconnected system (15) is ISS,

we need to verify the small-gain condition. It is well known

that this condition is equivalent to the cycle condition (see

[10]): for all p ¼ 2; . . .; n, for all ðk1; . . .; kpÞ 2 f1; . . .; ngp
,

where k1 = kp, it holds 8s 2 Rþnf0g
ck1k2

	 ck2k3
	 . . . 	 ckp�1kp

ðsÞ\s: ð19Þ

Consider a composition ck1k2
	 ck2k3

; then it holds

ck1k2
	ck2k3

ðsÞ¼ ~f�1
k1

ak1

ak2

1

1þdk3

~fk2
~f�1
k2

ak2

ak3

1

1þdk3

~fk3
sð Þ

� � � 

¼ ~f�1
k1

ak1

ak3

1

1þdk3
ð Þ 1þdk2

ð Þ
~fk3

sð Þ
� 

:

In the same way, we obtain the expression for the cycle

condition in (19) (here we use that k1 = kp):

ck1k2
	 ck2k3

	 . . . 	 ckp�1kp
ðsÞ

¼ ~f�1
k1

1
Qp

i¼2 ð1 þ dki
Þ
~fk1

sð Þ
� 

\s:

Thus, the small-gain condition (19) holds true for all

di [ 0, and by Theorem 1, the whole system is ISS.

If we assume that the cij are bounded, i.e., there exists

M [ 0 such that for all s 2 R
n
þ: cij(s) B M for all

i; j ¼ 1; . . .; n; i 6¼ j, then the inequality (19) can be

simplified:

8wi > 0 9dj > 0; j ¼ 1; . . .; n :

Xn

j¼1;j 6¼i

cijðsÞaj

ai
dj �M

Xn

j¼1;j 6¼i

aj

ai
dj

 !

\wi:

Using these estimates, we can rewrite (18) as

Xn

j¼1;j6¼i

cijðsÞaj � � ciiðsÞai � ei;

where ei ¼ aiðri þ hi þ wiÞ. In matrix notation, with

a ¼ ða1; . . .; anÞT ; e ¼ ðe1; . . .; enÞT
, it takes the form

CðsÞa\ � e: ð20Þ

We summarize our investigations in the following

proposition.

Proposition 1 Consider a network as in (14) and assume

that the cij are bounded for all i; j ¼ 1; . . .; n; i 6¼ j: If there

exist a 2 R
n; e 2 R

n; ai [ 0; ei [ 0; i ¼ 1; . . .; n such

that the condition CðsÞa\ � e holds for all t [ 0 and

s 2 R
n
þ, then the whole network (15) is ISS.

Remark 2 If the matrix C does not depend on s, then the

condition Ca\ � e is equivalent to Ca \ 0 (with a; e as in

the proposition above). But if C = C(s), then the existence

of a positive vector a; Ca\0 is not enough to guarantee

ISS of the system (15).

Remark 3 Recall that for the case, when C is a constant

matrix with negative elements on the main diagonal and all

other elements are nonnegative, C is diagonal dominant

(see, e.g., [3]), if it holds cii ?
P

j = icij \ 0 for all

i ¼ 1; . . .; n. In this case, one can easily prove with help of

Gershgorin circle theorem (see [3], Fact 4.10.17), that C is

Hurwitz. Similarly, the previous condition can be replaced

with another one: there are n numbers ai [ 0 such that

cii ai ?
P

j = icijaj \ 0 for all i ¼ 1; . . .; n (which is

equivalent to the existence of a positive vector a such that

Ca \ 0). In this case the matrix is also Hurwitz (see, e.g.,

[13]).

Now, we consider ~fi 2 K nK1; i ¼ 1; . . .; n, i.e.,

functions ~fi are monotonously increasing, but only up to a

certain limit ai :¼ supxi
f~fiðxiÞg. For such ~fi the global ISS

property cannot be achieved, but we can establish the

LISS property. We choose again the function Vi =

|xi| = xi as LISS Lyapunov function candidate for the i-th

subsystem and the corresponding gains 8s 2 Rþ as

follows

cijðsÞ :¼ ~f�1
i

ai

aj

1

1 þ d
~fjðsÞ

� 

; ciðsÞ :¼ ~f�1
i

ai

kuik1ri
s

� 

:

Note that in contrast to the previous case, where the

coefficients ai involved in the gain functions were chosen

arbitrarily, the aj are taken from the boundedness

assumptions on the functions ~fi. The reason is to obtain a

range of a function ai

aj

~fjðsÞ equal to the domain of definition

of ~f�1
i .

Applying the same methods as for ~fi 2 K1, we obtain

the following proposition:

Proposition 2 Consider a network as in (14). Let
~fj 2 K nK1; and aj :¼ supxj2Rf~fjðxjÞg; j ¼ 1; . . .n; a :¼
ða1; . . .; anÞT : If there exist g 2 R

n
þ; gi [ 0 and

e 2 R
n; ei [ 0; i ¼ 1; . . .; n such that

CðsÞa þ g\ � e; 8s 2 R
n
þ; ð21Þ

then the whole network (15) is LISS. Furthermore, the

constants q and qu from the Definition 1 can be chosen as

q :¼ 1; qu :¼ mini¼1;...;n gi and (21) holds for all

u 2 L1ðRþ;R
n
þÞ : kuik1 � gi; for all i ¼ 1; . . .; n:

Remark 4 The stability analysis for functions ~fi 2 K is

skipped here, because some more technical details are

necessary that would increase the size of the paper drasti-

cally. The result is similar to Proposition 2.
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3.2.2 Stability analysis of production networks

with time-delays

Now, we perform a stability analysis for general production

networks with transportation times modeled by time-delay

systems of the form (16), where we use the tools presented

in the Sect. 2.2.

Consider the case ~fi 2 K1; i ¼ 1; . . .; n, in particular ~fi are

unbounded. We choose Vi(xi) = |xi| = xi as an ISS-Lyapunov–

Razumikhin function candidate for the i-th entity. Obviously,

Vi(xi) satisfies the condition (12). To prove that the condition

(13) holds, we choose the functions cd
ij and cu

i as cij, ci in (17),

where cd
ii : 0 because there is no time-delay in the internal

dynamics (see the term ~ciiðxðtÞÞ~fiðxiðtÞÞ in the model). The

difference to (17) is that the time-delay is taken into account

in the argument of the gains. From the condition (13), we have

ViðxiÞ� max max
j

cd
ijðjjVd

j ðxjÞjjÞ; cu
i ð uj jÞ


 �

;

where Vj
d(xj(t)) = Vj(xj(t - sij)) and jjVd

j ðxjÞjj ¼
maxt�sij � s� t VjðxjðsÞÞ

�
�

�
�. This means cd

ij(||Vj
d(xj)||) C

cij(Vj(xj)) and furthermore for sij [~sij ) cd
ijðjVjðxjðt�

sijÞÞjÞ � cijðjVjðxjðt � ~sijÞÞjÞ.
From the definition of the gains, we get by application of

the Theorem 2 the following proposition by similar cal-

culations as for the stability analysis based on ODEs.

Proposition 3 Consider a network as in (16).

1. Assume that the cij are bounded for all i; j ¼
1; . . .; n; i 6¼ j. If there exist a 2 R

n; e 2 R
n; ai [ 0;

ei [ 0; i ¼ 1; . . .; n such that the condition CðsÞa\
�e holds 8t [ 0; 8s 2 R

n
þ; then the whole network is

ISS.

2. Let ~fj 2 K nK1, and aj :¼ supxj
f~fjðxjÞg; j ¼ 1; . . .

n; a :¼ ða1; . . .; anÞT
. If there exist g 2 R

n
þ; gi [ 0

and e 2 R
n; ei [ 0; i ¼ 1; . . .; n such that

CðsÞa þ g\ � e; 8s 2 R
n
þ; ð22Þ

then the whole network is LISS. Furthermore, the con-

stants q and qu from the Definition 2 can be chosen as

q :¼ 1 and qu :¼ mini¼1;...;n gi and (22) holds for all

u 2 L1ðRþ; R
n
þÞ : kuik1 � gi, for all i ¼ 1; . . .; n.

These results are applied to a certain scenario of a

production network in the following section.

4 Example of a certain scenario of a production

network

4.1 System without time-delays

We consider a certain scenario of a production network

without transportation times as in Fig. 2. There, the

numbers of the nodes are given in the centers of the cor-

responding circles. The first entity gets some raw material

from an external supplier, denoted by u. At each entity

the material will be processed with the rates cii
~fi ¼

ciiqi
~f ; qi � 0 and immediately sent to the entities according

to the network topology in Fig. 2 with certain distribution

coefficients cij. One half of the production of the entity four

will be sent to customers, not considered in the network.

The distribution coefficients are given by

CðxðtÞÞ ¼

�2 0 0 0:5
c21ðxðtÞÞ �1:5 0 0

c31ðxðtÞÞ 0 �2 0

0 1 1 �2:5

0

B
B
@

1

C
C
A; ð23Þ

where we implement the queue length method by choosing

c21ðxðtÞÞ :¼
A

A þ B
; c31ðxðtÞÞ :¼

B

A þ B
;

where A :¼ c22q2

x2ðtÞ þ e
; B :¼ c33q3

x3ðtÞ þ e
:

The term e [ 0 assures that the cij(x(t)) are well defined

and for simplicity one can choose e close to zero. Note that

c21 ? c31 : 1.

To analyze whether the network has the ISS property,

we only have to check the condition (20), which can be

easily verified with ai ¼ 1; i ¼ 1; . . .; 4. By Proposition 2,

the whole network is ISS. The gains are of the form

cijðsÞ :¼ ~f�1
i

1

1þdj

~fjðsÞ
� 

¼ ~f�1 qi

qj

1

1þdj

~f ðsÞ
� 

; s2Rþ;

where dj [ 0. For example, let ~f ðsÞ¼ ffiffi
s

p
and

qi ¼ 1; i¼ 1; . . .;4. Then, we have

cijðsÞ ¼
1

ð1 þ djÞ2
s; s 2 Rþ:

Such a function ~f describes a typical production policy.

The differential equations that describe the systems

behavior are of the form

_x1ðtÞ ¼ uðtÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffi
x4ðtÞ

p
� 2

ffiffiffiffiffiffiffiffiffiffi
x1ðtÞ

p
;

_x2ðtÞ ¼
1:5

x2ðtÞ
1:5

x2ðtÞ þ
2

x3ðtÞ

ffiffiffiffiffiffiffiffiffiffi
x1ðtÞ

p
� 1:5

ffiffiffiffiffiffiffiffiffiffi
x2ðtÞ

p
;

Fig. 2 Example of a scenario of a production network
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_x3ðtÞ ¼
2

x3ðtÞ
1:5

x2ðtÞ þ
2

x3ðtÞ

ffiffiffiffiffiffiffiffiffiffi
x1ðtÞ

p
� 2

ffiffiffiffiffiffiffiffiffiffi
x3ðtÞ

p
;

_x4ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
x2ðtÞ

p
þ

ffiffiffiffiffiffiffiffiffiffi
x3ðtÞ

p
� 2:5

ffiffiffiffiffiffiffiffiffiffi
x4ðtÞ

p
:

Let the initial state be given by x(0) = (2, 5, 4, 3)T and the

input function be u ¼ 10 � ðsinðtÞ þ 1Þ that is a fluctuation

of customer demand from 0 to 20. Note that one can choose

any other initial state and input u for which the condition

(21) is satisfied. Then, we get the stable behavior, displayed

in Figs. 3 and 4, where a simulation is performed with

Matlab.

If the distribution coefficients are chosen as c11 ¼ �1;

c22 ¼ �1; c33 ¼ �1; c44 ¼ �1, i.e., the condition (20) is

not satisfied, then we cannot make a statement about sta-

bility. Indeed, in this case, we get the following unstable

behavior displayed in Figs. 5 and 6. It means that the

number of unprocessed parts within a subsystem increases

up to infinity.

4.2 System with time-delays

Now, we consider the same scenario of a production net-

work as in Fig. 2, but with transportation times. The dis-

tribution coefficients cij for the stable situation are given by

(23) with c21 and c31 which represent the queue length

method and take into account time-delays:

c21ðxðtÞÞ :¼
eA

eA þ eB
; where eA :¼ c22q2

x2ðt � s21Þ þ e
;

eB :¼ c33q3

x3ðt � s21Þ þ e
;

c31ðxðtÞÞ :¼
B

A þ B
; where A :¼ c22q2

x2ðt � s31Þ þ e
;

B :¼ c33q3

x3ðt � s31Þ þ e
:

Now, we choose ~fiðsÞ ¼ qi

ffiffi
s

p
with q1 ¼ 3; q2 ¼ 2;

q3 ¼ 1:5; q4 ¼ 1:6. The condition (20) is satisfied, which

can be easily checked, and therefore, the network has the

ISS property. The retarded differential equations of the

system are of the form

_x1ðtÞ ¼ uðtÞ þ 1:6

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4ðt � s14Þ

p
� 6

ffiffiffiffiffiffiffiffiffiffi
x1ðtÞ

p
;

_x2ðtÞ ¼
3

x2ðt�s21Þ
3

x2ðt�s21Þ þ
3

x3ðt�s21Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ðt � s21Þ

p
� 3

ffiffiffiffiffiffiffiffiffiffi
x2ðtÞ

p
;

_x3ðtÞ ¼
3

x3ðt�s31Þ
3

x2ðt�s31Þ þ
3

x3ðt�s31Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ðt � s31Þ

p
� 3

ffiffiffiffiffiffiffiffiffiffi
x3ðtÞ

p
;

_x4ðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðt � s42Þ

p
þ 1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3ðt � s43Þ

p
� 4

ffiffiffiffiffiffiffiffiffiffi
x4ðtÞ

p
:

We choose sij = 2 and the initial function xðsÞ 

ð2; 5; 4; 3ÞT ; s 2 ½�2; 0�. The input function is given by the

constant function u:20 in contrast to the oscillating input

used before. Then, we get the stable behavior, displayed in

Fig. 7. Although we choose a constant input, we observe an

oscillating behavior of the number of unprocessed parts of

the subsystems. The reason is the implemented queue

length method in the terms c21(x(t)) and c31(x(t)): Here,

only the number of unprocessed parts at the time t - s21 or

t - s31 is used for the calculation of the distribution

coefficients ci1ðxðtÞÞ; i ¼ 2; 3. The number of unprocessed

parts, which has been sent during the time (t - si1,0] and

has not yet been arrived at subsystem two or three, is not

taken into account. Then, it happens that more parts are

sent to a subsystem with larger queue than to the other

subsystem until the distribution coefficients of both sub-

systems, depending on the number of unprocessed parts at

time t - si1, are equal. After this point, the proportionally

higher number of sent parts arrive at the subsystem, which

increases continuously the queue length and leads to a

smaller distribution coefficient ci1 in contrast to the dis-

tribution coefficient of the other subsystem. Now, the

procedure goes on in the opposite direction until the dis-

tribution coefficients are equal again. This cycle repeats

and causes the observed oscillating behavior.

Now, we increase the time-delays by choosing sij = 4

and the initial function xðsÞ 
 ð2; 5; 4; 3ÞT ; s 2 ½�4; 0�.
Furthermore, we choose e ¼ 0:001 to assure that the dis-

tribution coefficients c1i are well defined. All other

Fig. 3 Stable evolution of the

amount of unprocessed parts

within subsystems one and two
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parameters are the same. Then, we get the behavior of the

number of unprocessed parts of the subsystems displayed

in Fig. 8. The increased time-delays sij = 4 cause higher

amplitudes, i.e., larger maximal values of the number of

unprocessed parts of a subsystem in contrast to the time-

delays sij = 2 used in Fig. 7. Furthermore, as a result of

this increased oscillations, we observe that for some time

intervals, the number of unprocessed parts of subsystem

two and three equals or is close to zero, which means that

the entities do not produce parts in these time intervals. In

the conclusions, we provide some ideas to avoid such

negative outcomes.

5 Summary

5.1 Conclusions

We have modeled and investigated general production

networks in view of stability with and without transporta-

tion times. Two modeling methods were presented:

Fig. 4 Stable evolution of the

amount of unprocessed parts

within subsystems three and

four

Fig. 5 Unstable evolution of

the amount of unprocessed parts

within subsystems one and two

Fig. 6 Unstable evolution of

the amount of unprocessed parts

within subsystems three and

four

Fig. 7 Stable evolution with the time-delays sij = 2
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modeling by differential equations with and without time-

delays. They were used to model general production net-

works, where an autonomous control method, the queue

length method, was implemented. Based on these models,

we have presented tools to perform a stability analysis

using (L)ISS-Lyapunov or (L)ISS-Lyapunov-Razumikhin

functions. We have derived a condition that guarantees that

a network possesses the (L)ISS property. This result was

applied to a scenario of a production network with and

without transportation times. Here, we have found out that

the maximum number of unprocessed parts of a subsystem

with time-delays can be higher than that of a subsystem

without time-delays. Furthermore, we have observed an

oscillating behavior of the number of unprocessed parts of

a subsystem with time-delays, which was caused by the

modeled queue length method. The larger the time-delay,

the higher is this oscillating behavior and could cause

downtimes of the production.

5.2 Future work

The choices of the parameters cij for the modeling of the

queue length method can be changed: the number of parts

which are on the way to a subsystem, but not yet arrive

there, can be taken into account. This means that full

information access of the market entities of a network is

necessary, which is not always available. This problem

should be investigated. Another way of modeling the queue

length method can be performed by using switched systems

[16]. For such modeling method, the tools to perform a

stability analysis for general networks have to be devel-

oped. One can extend the modeling of production networks

by taking into account state jumps, e.g., loading and

unloading processes, one can use hybrid or impulsive

systems with and without time-delays [8]. Then, the

developed dwell-time condition plays a significant role and

should be investigated in more detail.

Acknowledgments Sergey Dashkovskiy, Michael Görges, Andrii

Mironchenko and Lars Naujok are funded by the German Research

Foundation (DFG) as part of the Collaborative Research Centre 637

‘‘Autonomous Cooperating Logistic Processes: A Paradigm Shift and

its Limitations’’. Michael Kosmykov is funded by the Volkswagen

Foundation (Project Nr. I/82684 ‘‘Stability, Robustness and Approx-

imation of Dynamic Large-Scale Networks - Theory and Applications

in Logistics Networks’’).

References

1. Alvarez E (2007) Multi-plant production scheduling in SMEs.

Robot Comput Integr Manuf 23(6):608–613

2. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer Ch

(2006) Autonomous control of production networks using a

pheromone approach. Phys A 363(1):104–114

3. Bernstein DS (2009) Matrix mathematics: theory, facts, and

formulas, 2nd edn. Princeton University Press, Princeton

4. Dai JG (1995) On positive Harris recurrence of multiclass

queueing networks: a unified approach via fluid limit models.

Ann Appl Prob 5(1):49–77

5. Dai JG, Weiss G (1996) Stability and instability of fluid models

for reentrant lines. Math Oper Res 21(1):115–134

6. Dai JG, Vande Vate JH (2000) The stability of two-station

multitype fluid networks. Oper Res 48(5):721–744

7. Dashkovskiy S, Görges M, Naujok L (2009) Local input to state

stability of production networks. In: Proceedings of the second

international conference on dynamics in logistics, LDIC 2009,

Springer, Bremen, Germany, pp 79–89

8. Dashkovskiy S, Kosmykov M, Naujok L (2010) ISS of inter-

connected impulsive systems with and without time-delays. In:

Proceedings of the 8th IFAC NOLCOS, Bologna, Italy, Sep.

01–03, 2010, pp 831–836

9. Dashkovskiy S, Naujok L (2010) Lyapunov-Razumikhin and

Lyapunov-Krasovskii theorems for interconnected ISS time-

delay systems. In: Proceedings of the 19th MTNS 2010, Buda-

pest, Hungary, July 5–9, pp 1179–1184
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