
ORIGINAL PAPER

Quantifying the impact of demand substitution on the bullwhip
effect in a supply chain

Xueping Li • Laigang Song • Zhaoxiao Zhao

Received: 15 October 2010 / Accepted: 8 September 2011 / Published online: 25 September 2011

� Springer-Verlag 2011

Abstract In a supply chain, the distorted demand infor-

mation when it goes upstream is commonly known as the

bullwhip effect. In this paper, the impact of demand substi-

tution on the bullwhip effect in a two-stage supply chain is

investigated. In our model, a single retailer observes inven-

tory levels for two products, among which product 1 can be

used to substitute product 2. The retailer places orders to a

single manufacturer following an order-up-to inventory

policy and uses a simple moving average forecasting method

to estimate the lead-time demand. The customers’ demands

are modeled by an autoregressive process. By analyzing the

bullwhip effect in such settings, quantitative relations

between the bullwhip effect and the forecasting method, lead

time, demand process, and the product substitution are

obtained. Numerical results show that demand substitution

can reduce the bullwhip effect in most cases.

Keywords Bullwhip effect � Demand substitution �
Supply chain management

1 Introduction

A simple two-stage supply chain typically consists of

manufacturers, retailers, and end customers. Only retailers

have direct information of end customers’ demands. As to

manufacturers, only orders from retailers can be seen. End

customers’ demands are not visible to manufactures.

Products are distributed downward along the supply chain,

while information flows upward from end customers to

manufacturers. It has been noticed that the information is

distorted due to various reasons. This distortion of the

demand in the upstream of a supply chain is widely known

as the bullwhip effect [5, 12], which has been studied from

both design and operation perspectives.

Figure 1 illustrates the bullwhip effect in a three-stage

supply chain that consists of manufacturers, distributors,

retailers, and end customers. The order quantity, placed by

the distributors to manufacturers, is distorted dramatically

comparing with the real end customers’ demand. Because of

observing only immediate order data, the entities in the

supply chain are misled by the amplified demand patterns.

This distorted information causes inefficiencies in many

parts of the supply chain, such as excess raw materials due to

unplanned purchases from suppliers, additional manufac-

turing expenses created by excess order demands, inefficient

utilization and overtime, excessive warehouse cost, and so

on. Fuller et al. [9] pointed out that the inefficiencies led by

distorted information born some responsibility for $75 bil-

lion to $100 billion out of $300 billion grocery sales trapped

in the pipeline as the form of inventory in 1993.

The bullwhip effect has been commonly and conve-

niently measured as the ratio of order variance to demand

variance. It depends on the demand process at the end

customer level, the order lead time, the demand forecasting

model used, and the replenishment policy. In this paper, we

mainly discuss the impact of demand substitution.

There are two fundamental forms of substitution:

‘‘supplier driven’’ and ‘‘customer driven’’. In supplier-dri-

ven pattern, supplier substitutes products of type A with
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products of type B based on its own inventory position, the

market forecasting, and other related information. For

example, a computer manufacturing finds that 2G memory

has too many inventories but 1G memory is out of stock.

New shipments of 1G memory will arrive in 3 months

without incurring expedited cost. In this case, the supplier

can run a promotion to lower the price of 2G memory, so

that part of the customers who want 1G memory will

switch to 2G. The supplier-driven substitution often occurs

in multi-product manufacturing system and some service

industry.

In customer-driven pattern, the product substitution

decision is made by the customers. When a product is

stock-out, the customer either chooses other products or

leaves without buying. Due to the heterogeneous customer

demands, the supplier is unable to predict the decision of

each customer. To prevent product from stocking out, the

seller must consider all customers’ interests to place the

inventory replenishment order. This paper only considers

the case of customer-driven substitution.

The existence of the demand substitution will finally

affect the inventory control policy of items either served as

possible substitutions or being substituted. For example,

the inventory of items of type A can be used to satisfy the

unmet demand of items of type B and thus to prevent the

loss of sales. Under this circumstance, it is not necessary to

carry out as much safety stock as if demands are totally

independent. The demand substitution creates interdepen-

dency among items because each demand for currently

unavailable item is transferred to demand for currently in

stock substitutes. Optimizing the inventory policy sub-

jected to the influence of the interdependency is a very

complex problem. But it is clear that the demand substi-

tution has significant influence on the inventory policy [1].

The rest of this paper is organized as follows. Section 2

extensively reviews relevant literature on the bullwhip

effect and demand substitution. Section 3 develops the

model to study the impact of demand substitution on the

bullwhip effect in a simple two-stage supply chain. Section

4 presents numerical experiments and discussion of the

results. Finally, Sect. 5 concludes this paper and outlines

the direction of future research.

2 Literature review

The bullwhip effect was first proposed and studied by

Forrester [8]. This paper laid the foundation for the

research in this field. As mentioned in Chen et al. [4], the

focus of most previous research has been on the following

areas: (1) demonstrating the existence of the bullwhip

effect, (2) identifying possible causes of the bullwhip

effect, and (3) developing strategies to reduce the impact of

the bullwhip effect.

Metters [16] established an empirical lower bound on the

profitability to identify the magnitude of the problem caused

by the bullwhip effect. He modeled the supply chain as a

periodic, time-varying, stochastic demand dynamic program

with capacitated production and used dynamic programming

to determine the optimal ordering policy.

Lee et al. [12, 13] analyzed four important causes for the

bullwhip effect, including demand signal processing, the

rationing game, order batching, and price fluctuation. In

addition, they proposed actions to mitigate the detrimental

impact of the bullwhip effect.

Chen et al. [4] investigated the bullwhip effect in a two-

stage supply chain and examined two factors that are

assumed to cause the bullwhip effect, demand forecasting,

and order lead time. Their work showed that centralizing

demand information can reduce, but not completely elim-

inate, the bullwhip effect. Chen et al. [5] explored the

impact of different forecasting methods on the bullwhip

effect in a two-stage supply chain. And they found that

using the exponential smoothing forecasting method led to

a bigger bullwhip effect than using the moving average

forecasting method. They concluded that by choosing

proper demand process and/or forecasting method, the

bullwhip effect may be reduced.

Demand substitution has been a research topic for dec-

ades. To the best of our knowledge, McGillivray and Silver

[15] are the first one who studied the demand substitution.

They investigated the effects of demand substitution on

inventory policy and inventory/shortage costs. By studying

a two-item case, they found that the inventory cost was

reduced significantly, thanks to the demand substitution. In

addition, they pointed out that under demand substitution,

the optimal stocking rule was substantially different from

the case where the two types of items were independent.

Similar to McGillivray and Silver [15], some of the

research on demand substitution is also conducted in a

simple two-item case. Parlar and Goyal [18] modeled the

two-substitutable-product problem as an extension of a

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71

U
ni

ts

End-customers' demand

Retailer's order

Distributor's order

Time

Fig. 1 The distortion of demand information

222 Logist. Res. (2011) 3:221–232

123



single-period inventory problem to which the result of

classical news-vendor problem can be applied. They

proved that the expected profit function was strictly con-

cave for a wide range of parameters values. Rajaram and

Tang [19] analyzed the impact of demand substitution on

order quantities and expected profits in an extended news-

vendor model. In their model, the demand of the products

in shortage can be substituted by products in stock with a

certain probability. They studied the mechanism that the

demand uncertainty and degree of substitution affected the

order quantities and expected profits. Drezner et al. [7]

investigated the demand substitution effect on an economic

order quantity (EOQ) model with two types of products.

Three cases were studied: no substitution, full substitution,

and partial substitution. The author argued that in a

deterministic setting with proportional substitution cost, the

full substitution could not be optimal, and the partial sub-

stitution was optimal when the transfer cost from product 1

to product 2 satisfied a certain condition; otherwise, the no

substitution policy would be optimal.

Some of the research studied the situation with multiple

types of products. Bitran and Dasu [3] and Bassok et al. [2]

considered the demand substitution with multiple types of

products under the ‘‘one-way substitutability’’ scenario.

They divided the products into several grades. The products

in the higher grades can be used to substitute the product in

the lower grade with a certain cost. In their model, different

types of products have different associated holding, short-

age, and salvage costs. Bitran and Dasu [3] examined the

demand substitution in the semiconductor industry. In their

model, product demands were deterministic, but the actual

quantity produced was different from the quantity being

processed due to random yield of products. Then, they

extended their research with random demand for products

and adding setup cost for each product substitution. Bassok

et al. [2] considered a single-period multi-product inventory

problem with substitution and proportional costs and reve-

nues. Their study concluded that the benefit of demand

substitution was higher when the demand variability and

salvage values of products were high and substitution cost

and profit margins were low. Drezner and Gurnani [6]

extended their previous research [7] from two products to

N products. They studied a deterministic nested substitution

problem in which multiple products could be substituted for

each other at a certain cost under an EOQ setup. Their

research was also conducted under a ‘‘one-way substitut-

ability’’ scenario. Agrawal and Smith [1] considered the

problem of optimizing assortments in a multi-item retail

inventory system. The customers bought items in set. If one

item was not available, the customer either walked away or

accepted a substitution or change the purchased item set. A

demand model to capture this behavior was proposed to

derive a tractable approximation of the problem. By

assuming a fixed cycle for replenishment with no lead time,

their model reduced to a multi-item news-vendor model.

Netessine and Rudi [17] considered demand substitution

problem with multi-products in two different scenarios in the

demand substitution: the centralized management where all

products were managed by a central decision maker and

decentralized inventory management where each product

was managed by an independent decision maker. In their

model, a deterministic proportion of unsatisfied demand for a

product can be substituted by other type of products.

Some researchers extended their study on demand substi-

tution to field of service industry, represented by Karaesmen

and van Ryzin [11]. They studied an overbooking problem

with multiple reservation and inventory classes. Different

from classical revenue management problem, the inventory

classes may be used as a substitution to satisfy the demand of a

given reservation class. The object was to maximize the

expected profit and determine overbooking levels for the

reservation classes by taking substitution as an option.

Although there are plenty of studies on the bullwhip

effect and demand substitution, to the best of our knowl-

edge, we are the first one who examine the impact of

demand substitution on the bullwhip effect and identify the

potential opportunities to mitigate the bullwhip effect by

considering demand substitution.

3 Problem definition and model development

The bullwhip effect is commonly known as the propagation

and amplification of order fluctuations from lower level of

a supply chain to its upper level. We are interested in the

impact of demand substitution on the bullwhip effect. In

our model, we investigate this impact in a simple supply

chain that includes a single retailer, a single manufacturer,

and two types of products. By calculating the ratio of

variance of retailer’s orders to the manufacturers to the

variance of demands from the end customers, we are able

to quantify the bullwhip effect.

3.1 Notations

Let us define the following notations:

i index for products, i = 1, 2;

t index for time period number;

k percentage of product 1 can be used to substitute

product 2, 0 B k\ 1;

L the lead time;

p the number of demand observation periods used in

the moving average;

li average demand of product i in the autoregressive

demand model;
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qi the autocorrelation coefficient of the autoregressive

model of product i;

et,i forecast error for product i during time period t;

Dt,i demand for product i during time period t;

Dt,i
L lead-time demand for product i;

D̂L
t;i

the forecast of the lead-time demand for product i;

zi normal z-score, determined by the desired service

level;

r̂L
t;i standard deviation of forecast error of lead-time

demand of product i;

yt,i order-up-to level for product i at the beginning of

time period t;

qt,i order quantity for product i at the beginning of time

period t;

LBi the lower bound of the bullwhip effect of product i;

CL,q a constant function of L and q

3.2 Demand process

We make the following assumptions in our problem. At the

beginning of time period t, the retailer estimates the

demands for two products during time period t, Dt,i, fol-

lowing the moving average forecasting scheme. Suppose

the order cost is negligible, and the retailer places an order,

qt,i, to the manufacturer according to the order-up-to pol-

icy. Further, we assume that a fixed percentage, k, of

product 1 is used to substitute product 2.

It is supposed that end customers’ demands are modeled

by an autoregressive (AR) demand process that has been

applied to the analysis of the bullwhip effect and infor-

mation sharing by many researchers such as Zhang [21]

and Gilbert [10]. Taking demand substitution into consid-

eration, the end customers’ demands for the two products

during time period t can be given as follows:

Dt;1 ¼ l1 þ q1Dt�1;1 þ �t;1 þ kDt;1

Dt;2 ¼ l2 þ q2Dt�1;2 þ �t;2 � kDt;1;
ð1Þ

where Dt,i is the end customer demand for product i in

period t, li is the average demand, qi represents the

autocorrelation parameter with |q1| \ 1 - k and |q2| \ 1,

and �t;i are independent and identically distributed (i.i.d.)

from a symmetric distribution with mean 0 and standard

deviation ri, i = 1, 2.

From (1), the following results can be obtained.1

EðDt;1Þ ¼
l1

1 � q1 � k
ð2aÞ

VarðDt;1Þ ¼
r2

1

ð1 � kÞ2 � q2
1

ð2bÞ

EðDt;2Þ ¼
l2ð1 � q1 � kÞ � kl1

ð1 � q1 � kÞð1 � q2Þ
ð2cÞ

VarðDt;2Þ ¼
½ð1 � kÞ2 � q2

1�r2
2 � k2r2

1

½ð1 � kÞ2 � q2
1�ð1 � q2

2Þ
: ð2dÞ

3.3 Inventory policy

In our model, we assume that the retailer follows a simple

order-up-to inventory policy to bring the actual inventory

level, yt-1,i - Dt-1,i, to the target inventory level, yt,i. We

assumed the lead times, defined as the delay between

placing an order to receiving the order, for both products

are the same, fixed L periods. In other words, the order

placed at the start of period t is received at the start of

period t ? L. The order quantities for the two products at

the beginning of time period t can be determined as

qt;1 ¼ yt;1 � ðyt�1;1 � Dt�1;1Þ
¼ yt;1 � yt�1;1 þ Dt�1;1 Product 1

qt;2 ¼ yt;2 � ðyt�1;2 � Dt�1;2Þ
¼ yt;2 � yt�1;2 þ Dt�1;2 Product 2

Note that qt,i might be negative if the remaining inventory

from period t - 1 is greater than the order-up-to level of

period t. In this case, it is treated as excess inventory and

can be returned without any cost. Thus, our model is

simplified without considering inventory holding cost.

Chen et al. [5] proved that Var(q) and Var(q?) were quite

close. Here q? = max{qt,0}.

The target inventory yt,i at the beginning of period t is

estimated from the observed demand as

yt;1 ¼ D̂L
t;1 þ z1r̂

L
t;1

yt;2 ¼ D̂L
t;2 þ z2r̂

L
t;2;

ð3Þ

where D̂L
t;i is the forecast of lead-time demand for product i,

r̂L
t;i is the standard deviation of the forecast error of lead-

time demand for product i, zi is the normal z-score that

chosen to meet the desired service level of the inventory

policy, and zir̂L
t;i estimates safety inventory during the lead

time.

We suppose that the retailer uses a simple moving

average (MA) to estimate Dt,i
L and rt,i

L based on the infor-

mation of the past p periods. Both products are assumed to

have the same predication periods, i.e., p is the same to

both products. According to MA,

D̂L
t;i ¼ L

Pp
j¼1 Dt�j;i

p

� �

ð4Þ

r̂L
t;i ¼ CL;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
j¼1ðDt�j;i � D̂t�j;iÞ2

p

s

; ð5Þ
1 The explicit technique details are shown in the Appendix.
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where Dt�j;i � D̂t�j;i is the forecast error of the (t - j)th period

of product i, and CL,q is a constant function of L, q and p. A

detailed discussion of this constant is given by Ryan [20].

To quantify the bullwhip effect under demand substi-

tution, we should determine how the variance of qt,i is

relative to the variance of Dt,i. In other words, the quanti-

fied bullwhip effect of this simple supply chain in period t

is
Varðqt;iÞ
VarðDiÞ.

3.4 Quantifying the bullwhip effect

Since the variance of qt;i and Di are different for the two

products, the bullwhip effect of the two products will be

discussed separately.2

Given the equations of the order-up-to level, demand

forecasting, and standard deviation of forecast error, we

can further express qt,1 as follows:

qt;1 ¼ yt;1 � yt�1;1 þ Dt�1;1

¼ ðD̂L
t;1 þ z1r̂

L
t;1Þ � ðD̂L

t�1;1 þ z1r̂
L
t�1;1Þ þ Dt�1;1

¼ ð1 þ L=pÞDt�1;1 � ðL=pÞDt�p�1;1 þ z1ðr̂L
t;1 � r̂L

t�1;1Þ;

Then, the variance of the order quantity qt,1 for product 1 at

time period t is as follows:

Varðqt;1Þ ¼ Var½ð1 þ L=pÞDt�1;1 � ðL=pÞDt�p�1;1

þ z1ðr̂L
t;1 � r̂L

t�1;1Þ�

¼ VarðD1Þ 1 þ 2L

p
þ 2L2

p2

� �

1 � qp
1

ð1 � kÞp

� �� �

þ z2
1Varðr̂L

t;1 � r̂L
t�1;1Þ: ð6Þ

For product 2, we apply the same procedures as product 1.

qt;2 ¼ yt;2 � yt�1;2 þ Dt�1;2

¼ ðD̂L
t;2 þ z1r̂

L
t;2Þ � ðD̂L

t�1;2 þ z1r̂
L
t�1;2Þ þ Dt�1;2

¼ ð1 þ L=pÞDt�1;2 � ðL=pÞDt�p�1;2 þ z2ðr̂L
t;2 � r̂L

t�1;2Þ;

Varðqt;2Þ ¼Var½ð1 þ L=pÞDt�1;2

� ðL=pÞDt�p�1;2 þ z2ðr̂L
t;2 � r̂L

t�1;2Þ�

¼ 1 þ 2
L

p
þ 2

L2

p2

� �

VarðD2Þ

� 2L

p
þ 2L2

p2

� �

qp
2VarðD2Þ

� 2L

p
þ 2L2

p2

� �
k2ð1 � kÞVarðD1Þ
ð1 � k � q1q2Þ

�
Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

þ z2
2Varðr̂L

t;2 � r̂L
t�1;2Þ:

ð7Þ

Given the above derivation, the bullwhip effects for

product 1 and product 2 in period t are given below:

Varðqt;1Þ
VarðD1Þ

� 1 þ 2L

p
þ 2L2

p2

� �

1 � qp
1

ð1 � kÞp

� �

; ð8Þ

Varðqt;2Þ
VarðD2Þ

� 1 þ 2L

p
þ 2L2

p2

� �

ð1 � qp
2Þ

� 2L

p
þ 2L2

p2

� �
k2ð1 � kÞ

ð1 � k � q1q2Þ
VarðD1Þ
VarðD2Þ

�
Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

; ð9Þ

the bounds are tight when z1 = 0, z2 = 0, that is, the

security inventory is not taken into considerations [14].

The lower bound of the bullwhip effect of product i has

no relation with time period. Therefore, we use LBi to

denote the lower bounds of the bullwhip effect of product i,

omitting the subscript of time periods.

LB1 ¼ 1 þ 2L

p
þ 2L2

p2

� �

1 � qp
1

ð1 � kÞp

� �

ð10Þ

LB2 ¼ 1 þ 2L

p
þ 2L2

p2

� �

ð1 � qp
2Þ

� 2L

p
þ 2L2

p2

� �
k2ð1 � kÞ

ð1 � k � q1q2Þ
VarðD1Þ
VarðD2Þ

�
Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

: ð11Þ

4 Numerical experiments

Several observations can be made from (10) and (11). First,

we notice that LB1 and LB2 are functions of the following

parameters: (a) p, number of observations used in MA, (b)

L, the lead time, (c) q1 and q2, first-order autocorrelation

coefficients of the autoregressive demand process of

product 1 and product 2, respectively, and (d) k, the sub-

stitution percentage. In the rest of this section, we will

discuss the influence of the five parameters on the lower

bounds of the bullwhip effect for both products.

4.1 No demand substitution

If k = 0, i.e., product 1 is not used to substitute product 2,

LB1 and LB2 have the same format.

LB1 ¼ 1 þ 2L

p
þ 2L2

p2

� �

ð1 � qp
1Þ

LB2 ¼ 1 þ 2L

p
þ 2L2

p2

� �

ð1 � qp
2Þ

There are substantial literatures investigating this problem.

Chen et al. [4] pointed out that the variability amplification2 The explicit technique details are shown in the Appendix.
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of product demand (the bullwhip effect) was (a) a

decreasing function of p, the number of observations used

in MA, (b) an increasing function of L, the lead time, (c) a

decreasing function of q, when q[ 0, and (d) larger for

odd values of p than for even values of p, when q\ 0.

Let us put aside the equations and think about the

problem intuitively. The result of the study shows that

(a) the smoother the demand forecasts, the smaller the

increase in the bullwhip effect; (b) the longer the lead

times, the more demand data are needed to reduce the

bullwhip effect; (c) the higher the degree of the demands is

positively correlated, the smaller the increase in variability.

All these conclusions are in line with our experience.

If product 1 is used to substitute product 2, i.e., k[ 0,

the situation is very complex. We will discuss the influence

of k on LB1 and LB2, separately.

4.2 The effect of demand substitution on LB1

Figures 2, 3, and 4 show the effect of k on the lower bound

of the bullwhip effect when the number of the observation

used in MA p, the order lead time L, and the autoregressive

coefficient of product 1 q1 are changed, respectively. When

k[ 0, i.e., with demand substitution, similar to the con-

clusion in Sect. 4.1, the lower bound of the bullwhip effect

of product 1 is still a decreasing function of p and

increasing function of L. The impact of demand substitu-

tion on lower bound of the bullwhip effect of product 1 is

correlated with the impact of the autoregressive coefficient

of product 1 q1 and the parity of p.

When q1 [ 0, the lower bound of the bullwhip effect of

product 1 is a decreasing function of k no matter what

value of the other two parameters are. Technically, we can

also draw this conclusion according to (10). Specifically, if

we change the expression of Dt,1 into:

Dt;1 ¼ l1

k
þ q1

k
Dt�1;1 þ

�t;1

k
; ð12Þ

q1/k can be seen as autoregressive coefficient of the

demand process of product 1. For q1 [ 0, if k increases,
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the curve is lower for k[ 0 than k = 0
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Fig. 4 Impact of autoregressive coefficient of product 1 on the lower

bound of the bullwhip effect of product 1. For even value of p, the

lower bound of the bullwhip effect of product 1 is a decreasing

function of |q1| and the demand substitution makes contribution on

reducing the lower bound of the bullwhip effect of product 1. This is

true for odd value of p when q1 is positive. However, when p is odd

and q1 is negative, the lower bound of the bullwhip effect increases

when |q1| increases. And under this situation, the demand substitution

will cause increase in the bullwhip effect
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q1/k will decrease. In other words, the correlation between

successive period demands of product 1 decreases. There-

fore, the variability amplification of demand for product 1

will increase.

However, when q1 \ 0, i.e., successive period demands

are negatively correlated, we observe interesting behavior.

When p is even, LB1 is an increasing function of q1, and

the demand substitution plays a positive role in reducing

the lower bound of the bullwhip effect of product 1. For

odd values of p, LB1 is a decreasing function of q1, and

LB1 is larger for k[ 0 than for k = 0. In other words,

when the successive period demands are negative related

and the number of observation used in MA is odd, the

demand substitution leads to increase in the lower bound of

the bullwhip effect of product 1. In addition, when q1 is

negative and smaller than a certain value, the lower bound

of the bullwhip effect of product 1 will be larger for odd

values of p than for p - 1.3

4.3 The effect of demand substitution on LB2

Figures 5, 6, 7, 8, 9, and 10 show this effect of k on the

lower bound of the bullwhip effect of product 2 when the

number of the observation used in MA p, the order lead

time L, and the autoregressive coefficients q1 and q2 are

changed, respectively. When k[ 0, similar to the conclu-

sion in Sect. 4.1 and 4.2, the lower bound of the bullwhip

effect of product 2 is still a decreasing function of p and

increasing function of L. The impact of demand

substitution on lower bound of the bullwhip effect of

product 2 is correlated with the impacts of autoregressive

coefficient q1 and q2 as well as the parity of p.

For odd values of p, the demand substitution always

makes contribution on reducing the bullwhip effect of

product 2. Specifically, the lower bound of the bullwhip

effect of product 2 is a concave function of q1. In addition,

LB2 is a decreasing function of k, and for q1q2 [ 0, the

demand substitution causes more quickly decrease in the

lower bound of the bullwhip effect of product 2 along with

the increase of |q1|. The lower bound of the bullwhip effect

of product 2 is a convex function of q2 when q2 \ 0 and a

concave function of q2 when q2 [ 0.
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Fig. 5 Impact of number of the observation used in MA on the lower

bound of the bullwhip effect of product 2. It shows that the lower

bound of the bullwhip effect of product 2 is an increasing function of

L and the demand substitution can reduce the lower bound of the

bullwhip effect since the curve is lower for k[ 0 than k = 0
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Fig. 6 Impact of order lead time on the lower bound of the bullwhip

effect of product 2. It shows that the lower bound of the bullwhip

effect of product 2 is an increasing function of L and the demand

substitution can reduce the lower bound of the bullwhip effect since

the curve is lower for k[ 0 than k = 0
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Fig. 7 Impact of autoregressive coefficient of product 1 on the lower

bound of the bullwhip effect of product 2. For even value of p, when

q2 is positive, the lower bound of the bullwhip effect of product 2 is a

decreasing function of q1 and the demand substitution makes

contribution on reducing the bullwhip effect. When q2 is negative,

the lower bound of the bullwhip effect will increase as |q1| increasing

and the demand substitution will cause bigger amplification of the

demand

3 Chen et al (2000a) oversimplified the situation to claim that for

q\ 0 the lower bound on the increase in variability will be large for

odd values of p than for even values of p.
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For even values of p, sometimes the demand substitution

will cause increase in the lower bound of the bullwhip

effect of product 2. Specifically, the lower bound of the

bullwhip effect of product 2 is a decreasing function of q1

when q2 is positive, and the demand substitution makes

contribution on reducing the bullwhip effect. When q2 is

negative, the lower bound of the bullwhip effect will

increase as |q1| increasing and the demand substitution will

cause bigger amplification of the demand. The lower bound

of the bullwhip effect of product 2 is a concave function of

q2. In addition, only when q1 [ 0, the demand substitution

can reduce the lower bound of the bullwhip effect of

product 2. However, when q1 \ 0, the demand substitution

will cause increase in the bullwhip effect. In technical

level, we can prove that when
q1

1�k þ q2\0, for even values

of p, the demand substitution will increase the lower bound

of the bullwhip effect of product 2. We give the proof as

follows.

When p = 2n, n = 1, 2, 3,…,

Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

¼ q0
2q

pþ1
1

ð1 � kÞpþ1
þ q1

2q
p
1

ð1 � kÞp

þ � � � þ qp�2
2 q3

1

ð1 � kÞ3

qp�1
2 q2

1

ð1 � kÞ2

¼ q0
2q

p
1

ð1 � kÞp

q1

1 � k
þ q2

� �

þ � � � þ qp�2
2 q2

1

ð1 � kÞ2

q1

1 � k
þ q2

� �

¼ q1

1 � k
þ q2

� � q0
2q

p
1

ð1 � kÞp þ � � � þ qp�2
2 q2

1

ð1 � kÞ2

 !

:

Note that for even values of p

q0
2q

p
1

ð1 � kÞp þ � � � þ qp�2
2 q2

1

ð1 � kÞ2
[ 0:

So for
q1

1�k þ q2\0;

Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

\0:

In addition,
VarðD1Þ
VarðD2Þ [ 0 and 1 - k - q1q2 [ 0 (since

|q1| \ 1 - k), so

2L

p
þ 2L2

p2

� �
k2ð1 � kÞ

ð1 � k � q1q2Þ
VarðD1Þ
VarðD2Þ

Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

\0:

So in this case, the demand substitution increases the lower

bound of the bullwhip effect of product 2. This conclusion

provides a criterion for making decision on demand sub-

stitution. If it is ignored, the demand substitution will make

the situation worse.

5 Discussion and conclusions

In this research, we quantified the impact of the demand

substitution on the bullwhip effect in a simple supply chain

with a single retailer, a single manufacturer, and two types

of products. And product 1 can be used to substitute

product 2. It is assumed that the customer’s demands are

forecasted by first-order autoregressive demand process.

The retailer employs order-up-to inventory policy and

follows a simple MA forecasting method to estimate the

lead-time demand. By quantifying the bullwhip effect in

such assumption, we obtain relations between the bullwhip

effect and the demand variance, order policy as well as the

product substitution.
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Fig. 8 Impact of autoregressive coefficient of product 1 on the lower

bound of the bullwhip effect of product 2. For odd value of p, no

matter q2 is positive or not, the lower bound of the bullwhip effect of

product 2 is a decreasing function of |q1|. Moreover, for q1q2 [ 0, the

demand substitution causes more quickly decrease in the lower bound

of the bullwhip effect
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Fig. 9 Impact of autoregressive coefficient of product 2 on the lower

bound of the bullwhip effect of product 2. For odd value of p, the

demand substitution can make contribution on reducing the lower

bound of the bullwhip effect of product 2. Furthermore, for q1q2 [ 0,

the demand substitution causes faster decrease in the lower bound of

the bullwhip effect along with the increase of |q2|
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The lower bounds of the bullwhip effect for both

products are decreasing function of p, the number of

observations used to estimate the mean and the variance of

demand. Figures 2 and 5 show the relationship between the

lower bounds of the bullwhip effect and the smoothing

periods (p). When p is large, the lower bound of the bull-

whip effect of both product is really small. However, when

p is small, the lower bound of the bullwhip effect is

extremely big. In summary, the smoother the demand

forecasts, the smaller the increase in the lower bound of the

bullwhip effect.

The lower bounds of the bullwhip effect of both prod-

ucts are increasing functions of L, the lead-time parameter.

Figures 3 and 6 show the relationship between the lower

bounds of the bullwhip effect and the lead time L. As can

be seen from both Eq. 10 and Eq. 11, the larger L, the

higher the lower bounds are. If the lead time is doubled, to

maintain the same order of the lower bound of the bullwhip

effect, twice demand data must be supplied. That is, the

retailer must use more demand data in order to reduce the

bullwhip effect if the lead time is longer.

The impacts of demand substitution on the lower bounds

of the bullwhip effect of the two products are correlated

with the values of the autoregressive coefficients q1 and q2

as well as the parity of p. For product 1, i.e., the product

being used to substitute another one, generally, the demand

substitution will decrease the lower bound of the bullwhip

effect of product 1 except for odd values of p and negative

q1. When the successive period demands are negatively

related and the number of observation used in MA is odd,

the demand substitution will increase the lower bound of

the bullwhip effect of product 1.

For product 2, when q1 [ 0, q2 [ 0, the lower bound of

the bullwhip effect of product 2 is a decreasing function of

k. When q1 \ 0 or q2 \ 0, the behavior is hard to predict.

We prove that when
q1

1�k þ q2\0; for even values of p, the

lower bound of the bullwhip effect of product 2 will be

larger with demand substitution.

There are a few ways to extend the research in this

paper. First, the findings of this research are expected to

serve as a starting point to explore the impact of demand

substitution on the bullwhip effect in more complex

systems, including multi-stage supply chain network,

different inventory policy, and complex forecasting

method of lead-time demand estimation and different

demand processes. Secondly, the impact of the two

product substitution to the bullwhip effect can be

extended by modeling N products under ‘‘one-way sub-

stitution’’ and/or ‘‘two-way substitution’’ scenarios.

Thirdly, we assumed a deterministic proportion of sub-

stitution. However, literatures from marketing and psy-

chological research suggest that the customer purchase

pattern cannot be deterministic. The purchase decision is

largely influenced by the surrounding environment, social

status, emotional condition, and other subjective factors.

The research of this paper can be extended if the

demand substitution model could capture the customer

behavior more accurately.

Appendix

The derivation process of E(Dt,i) and Var(Dt,i)

When the autoregressive demand process is stationary, we

have E(Dt,i) = E(Dt-1,i) = E(Dt-2,i) = _ = E(Di) and

Var(Dt,i) = Var(Dt-1,i) = Var(Dt-2,i) = _ = Var(Di)

Dt;1 ¼ l1 þ q1Dt�1;1 þ �t;1 þ kDt;1

ð1 � kÞDt;1 ¼ l1 þ q1Dt�1;1 þ �t;1

ð1 � kÞEðDt;1Þ ¼ Eðl1Þ þ q1EðDt�1;1Þ þ Eð�t;1Þ
ð1 � kÞEðD1Þ ¼ l1 þ q1EðD1Þ þ 0

EðD1Þ ¼
l1

1 � q1 � k

ð1 � kÞ2
VarðDt;1Þ ¼ Varðl1Þ þ q1

2VarðDt�1;1Þ þ Varð�t;1Þ
ð1 � kÞ2

VarðD1Þ ¼ 0 þ q1
2VarðD1Þ þ r2

1

VarðD1Þ ¼
r2

1

ð1 � kÞ2 � q2
1

Dt;2 ¼ l2 þ q2Dt�1;2 þ �t;2 � kDt;1
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Fig. 10 Impact of autoregressive coefficient of product 2 on the lower

bound of the bullwhip effect of product 2. For even value of p, only

when q1 [ 0, the demand substitution can reduce the lower bound of the

bullwhip effect of product 2. And roughly speaking, along with the

increase of q2, the demand substitution causes faster decrease in

the lower bound of the bullwhip effect. However, when q1 \ 0, the

demand substitution will cause increase in the bullwhip effect
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EðDt;2Þ ¼ Eðl2Þ þ q2EðDt�1;2Þ þ Eð�t;2Þ � kEðDt;1Þ
EðD2Þ ¼ l2 þ q2EðD2Þ þ 0 � kEðD1Þ

ð1 � q2ÞEðD2Þ ¼ l2 � k
l1

1 � q1 � k

EðDt;2Þ ¼
l2ð1 � q1 � kÞ � kl1

ð1 � q1 � kÞð1 � q2Þ

VarðDt;2Þ ¼ Varðl2Þ þ q2
2VarðDt�1;2Þ þ Varð�t;2Þ

� k2VarðDt;1Þ
VarðD2Þ ¼ 0 þ q2

2varðD2Þ þ r2
2 � k2VarðD1Þ

ð1 � q2
2ÞVarðD2Þ ¼ r2

2 � k2 r2
1

ð1 � kÞ2 � q2
1

VarðDt;2Þ ¼
½ð1 � kÞ2 � q2

1�r2
2 � k2r2

1

½ð1 � kÞ2 � q2
1�ð1 � q2

2Þ

The derivation process of the further expression of qt,1

qt;1 ¼ yt;1 � yt�1;1 þ Dt�1;1

¼ ðD̂L
t;1 þ z1r̂

L
t;1Þ � ðD̂L

t�1;1 þ z1r̂
L
t�1;1Þ þ Dt�1;1

¼ ðD̂L
t;1 � D̂L

t�1;1Þ þ Dt�1;1 þ z1ðr̂L
t;1 � r̂L

t�1;1Þ

¼ L

p

Xp

i¼1

Dt�i;1 �
Xp

i¼1

Dt�1�i;1

 !

þ Dt�1;1

þ z1ðr̂L
t;1 � r̂L

t�1;1Þ

¼ L

p
ðDt�1;1 � Dt�p�1;1Þ þ Dt�1;1 þ z1ðr̂L

t;1 � r̂L
t�1;1Þ

¼ ð1 þ L=pÞDt�1;1 � ðL=pÞDt�p�1;1 þ z1ðr̂L
t;1 � r̂L

t�1;1Þ

The derivation process of the expression of Var(qt,1)

Varðqt;1Þ ¼ Var½ð1 þ L=pÞDt�1;1 � ðL=pÞDt�p�1;1

þ z1ðr̂L
t;1 � r̂L

t�1;1Þ�
¼ ð1 þ L=pÞ2VarðDt�1;1Þ � 2ðL=pÞð1 þ L=pÞ

� CovðDt�1;1;Dt�p�1;1Þ
þ ðL=pÞ2VarðDt�p�1;1Þ þ z2

1Varðr̂L
t;1 � r̂L

t�1;1Þ
þ 2z1ð1 þ 2L=pÞ � CovðDt�1;1; r̂

L
t;1Þ

¼ 1 þ 2
L

p
þ 2

L2

p2

� �

VarðD1Þ �
2L

p
þ 2L2

p2

� �

CovðDt�1;1;Dt�p�1;1Þ þ z2
1Varðr̂L

t;1 � r̂L
t�1;1Þ

þ 2z1ð1 þ 2L=pÞCovðDt�1;1; r̂
L
t;1Þ

ð13Þ

To further simplify Equation 9, we need to calculate

Cov(Dt-1,1, Dt-p-1,1) and CovðDt�1;1; r̂L
t;1Þ

CovðDt�1;1;Dt�p�1;1Þ

¼ Cov
1

1 � k
ðl1 þ q1Dt�2;1 þ �t;1Þ;Dt�p�1;1

� �

¼ Cov
l1

1 � k
;Dt�p�1;1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ q1

1 � k
CovðDt�2;1;Dt�p�1;1Þ

þ 1

1 � k
Covð�t;1;Dt�p�1;1Þ
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..

.

¼ qp
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ð1 � kÞp
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CovðDt�p�1;1;Dt�p�1;1Þ

¼ qp
1
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Note that Covð l1

1�k ;Dt�p�1;1Þ ¼ 0, because
l1

1�k is a constant

(Cov(X,a) = 0). Covð�t;1;Dt�p�1;1Þ ¼ 0, because

�t;1;Dt�p�1;1 are independent from each other.

Ryan [20] proved the following result that can further

simplify Equation 9. Assume the customer demands seen

by a retailer are random variables of the form as Dt ¼
l þ qDt�1 þ �t and the error terms �t are i.i.d. from a

symmetric distribution with mean 0 and variance r2. Let

the estimate of the standard deviation of forecast error of

lead-time demand be r̂L
t ¼ CL;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼j
ðDt�j�D̂t�jÞ2

p

r

; then

CovðDt�j; r̂
L
t Þ ¼ 0; 8i ¼ 1; . . .; p: ð15Þ

By applying the results of Equation 28 and Equation 29,

the expression about Var(qt,1) can be further simplified.

Varðqt;1Þ ¼ 1 þ 2
L

p
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p
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230 Logist. Res. (2011) 3:221–232

123



The derivation process of the further expression of qt,2

qt;2 ¼ yt;2 � yt�1;2 þ Dt�1;2

¼ ðD̂L
t;2 þ z1r̂

L
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L
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The derivation process of the expression of Var(qt,2)
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t;2 � r̂L
t�1;2Þ

þ 2z2ð1 þ 2L=pÞCovðDt�1;2; r̂
L
t;2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

ð17Þ

Now we calculate Cov(Dt-1,2, Dt-p-1,2)

CovðDt�1;2;Dt�p�1;2Þ ¼ Covðl2 þ q2Dt�2;2

þ �t�1;2 � kDt�1;1;Dt�p�1;2Þ
¼ Covðl2;Dt�p�1;2Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þq2CovðDt�2;2;Dt�p�1;2Þ

þ Covð�t�1;2;Dt�p�1;2Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

�kCovðDt�1;1;Dt�p�1;2Þ

¼ q2CovðDt�2;2;Dt�p�1;2Þ � kCovðDt�1;1;Dt�p�1;2Þ

..

.

¼ qp
2VarðD2Þ � k

Xp�1

i¼0

qi
2CovðDt�1�i;1;Dt�p�1;2Þ

We assume that the covariance is only affected by the

number of periods which are taken into consideration. That

is

CovðDt;1;Dt�p;2Þ ¼ CovðDt�1;1;Dt�p�1;2Þ

Dt;1 ¼ 1

1 � k
ðl1 þ q1Dt�1;1 þ �t;1Þ

Dt�p;2 ¼ l2 þ q2Dt�p�1;2 þ �t�p;2 � kDt�p;1

CovðDt;1;Dt�p;2Þ ¼ Covð 1

1 � k
ðl1 þ q1Dt�1;1 þ �t;1Þ;

l2 þ q2Dt�p�1;2 þ �t�p;2 � kDt�p;1Þ

¼ q1q2

1 � k
CovðDt�1;1;Dt�p�1;2Þ �

kq1

1 � k
CovðDt�1;1;Dt�p;1Þ

CovðDt�1;1;Dt�p�1;2Þ ¼
q1q2

1 � k
CovðDt�1;1;Dt�p�1;2Þ

� kq1

1 � k
CovðDt�1;1;Dt�p;1Þ

CovðDt�1;1;Dt�p�1;2Þ ¼
�kð1 � kÞqp

1

ð1 � k � q1q2Þð1 � kÞp VarðD1Þ

CovðDt�2;1;Dt�p�1;2Þ ¼
�kð1 � kÞqp�1

1

ð1 � k � q1q2Þð1 � kÞp�1
VarðD1Þ

..

.

CovðDt�i;1;Dt�p�1;2Þ ¼
�kð1 � kÞqp�iþ1

1

ð1 � k � q1q2Þð1 � kÞp�iþ1
VarðD1Þ

..

.

CovðDt�i;1;Dt�p�1;2Þ ¼
�kð1 � kÞq2

1

ð1 � k � q1q2Þð1 � kÞ2
VarðD1Þ

Thus

CovðDt�1;2;Dt�p�1;2Þ

¼ qp
2VarðD2Þ � kCovðDt�1;1;Dt�p�1;2Þ

Xp

i¼0

qi
2

1 � k
q1

� �i

¼ qp
2VarðD2Þ � k

Xp

i¼0

qi
2CovðDt�1�i;1;Dt�p�1;2Þ

¼ qp
2VarðD2Þ þ

k2ð1 � kÞVarðD1Þ
ð1 � k � q1q2Þ

Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

Substitute the above equation to Eq. 17, we have

Varðqt;2Þ ¼ 1 þ 2
L

p
þ 2

L2

p2

� �

VarðD2Þ �
2L

p
þ 2L2

p2

� �

CovðDt�1;2;Dt�p�1;2Þ þ z2
2Varðr̂L

t;2 � r̂L
t�1;2Þ

¼ 1 þ 2
L

p
þ 2

L2

p2

� �

VarðD2Þ

� 2L

p
þ 2L2

p2

� �

qp
2VarðD2Þ

� 2L

p
þ 2L2

p2

� �
k2ð1 � kÞVarðD1Þ
ð1 � k � q1q2Þ

Xp�1

i¼0

qi
2q

p�iþ1
1

ð1 � kÞp�iþ1

 !

þ z2
2Varðr̂L

t;2 � r̂L
t�1;2Þ

ð18Þ
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