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Abstract The conductor of an orchestra is able to dis-

tinguish not only between different instruments, but even

among dozens of string players performing on instruments

with similar sound qualities. Trained human ear not only is

capable to highly differentiate between pitches and colors

of sound, but also to localize the position, where the sound

is coming from. This paper presents a parameter mapping

sonification approach on production data, which is based

on these human perceptual skills. Representatively for

other logistic parameters, throughput times of orders are

sonified and allocated in a sonic space. Additionally to

auditory representations of the established resource and

order oriented views in logistics, a third perspective is

introduced, which displays the complete workflow of an

order simultaneously as a multi-pitched spatial sound.

Thus, causes and impacts of high throughput times in the

data set example could be identified.

Keywords Manufacturing � Parameter mapping

sonification � Data mining � Logistic analysis

1 Introduction

Profound analysis of actual and planning data and their

correlation is an essential requirement for the adjustment

of operating levers in production planning and control.

Depending on the amount of work systems of a production

shop, the number of product variants to be produced, and

the quantity of restrictions caused by technical require-

ments or customer demands, the structure of manufacturing

data easily reaches the complexity of NP-hard problems

[1]. Whereas traditional methods [2] rely on averaging in

order to reduce complexity, more recent approaches

include advanced statistics and data mining [3] for a deeper

understanding of production data. An important component

of both, data-mining and traditional statistic approaches as

applied in logistic analysis, is exploratory data analysis

(EDA). The term [4] comprises the participation of a

human analyzer, who interactively explores the structure of

data in recursive proceedings between generating and

proving hypotheses. Well-established approaches are

graphical statistics and data visualizations [5]. In the con-

text of chronologically structured data such as production

data, the acoustic equivalent to graphical display, the

auditory display of statistical data (as provided by sonifi-

cations) is a promising method to gain knowledge about

temporal fluctuations of bottlenecks in production

workflows.

In natural science, auditory display still is widely dis-

dained in comparison with its visual correspondent [6].

This might be caused by the visual alignment of human

thinking per se including written language as the legitimate

form to capture thoughts and scientific results. Still, the

transfer of auditory cognition to a graphical representation

meets a major challenge in most cases, but human ear has

qualities that are literally complementary to the ones of the

eyes. Whereas the latter tends to focus on singular events,

the former is capable to perceive far more complex

acoustic information. A conductor of an orchestra, for

example, is able to distinguish not only between different

instruments, but even among dozens of string players

performing on instruments with similar sound qualities.
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Trained human ear is not only capable to highly differen-

tiate between pitches and colors of sound, but also to

localize the position, where the sound is coming from.

Since sound only exists in temporal space, sonification of

chronologically structured data such as production data is

almost self-evident.

This paper presents an approach on auditory display of

production data, which is based on the human perceptual

skills described. Exemplary for other logistically relevant

parameters (such as work content, setup time, or schedule

deviation), throughput times of orders were sonified and

allocated in sonic space in order to reveal evident infor-

mation about fluctuations in the overall workflow.

The following sections of this paper depict the starting

point of this research, considering exploratory data analysis

in logistic engineering (Sect. 2) as well as parameter

mapping sonification in the scientific field of auditory

display (Sect. 3). Section 4 describes the methodical approach

of this research on the basis of the exploration of a data

sample from sheet metal production. Finally, Sect. 5 pre-

sents a conclusion and a critical discussion.

2 Data analysis in logistics

The contradictoriness of logistic targets (low inventory,

low throughput times, high schedule adherence, and appro-

priate utilization) as described by Gutenberg’s scheduling

dilemma [7] has comprehensively been treated in literature.

Whereas there are practically approved solutions to balance

inventory, throughput times, and utilization such as

Logistic Operation Curves [2], schedule adherence and its

impact on the overall workflow have not equally been

investigated. Yu [8] criticizes an insufficient consideration

of schedule adherence in production planning and control

systems (PPC) and develops a scheduling operation curve

in order to quantify the impact and causes of schedule

deviations. As an extension of the Logistic Operation

Curves, this approach is also based on averaging and not

suitable for the identification of characteristic patterns in

the chronological sequence of operations.

In order to enhance the level of detail in production

planning and control in detail, as a first step, analysis

methods need to be developed, which provide a deeper

understanding of the structure of logistic data itself.

Therefore, novel approaches in logistic analysis increas-

ingly rely on Knowledge Discovery in Databases (KDD)

including artificial neural networks (ANN) and explorative

data analysis such as the multi-stage quality information

model (MSQIM), which reveals causal factors of quality

defects [9]. Windt and Hütt [10] use cluster analysis and

methods adapted from gene expression analysis to classify

product variants that are the cause of lateness. Although

classifications are capable to identify correlations between

several qualities of orders and processes, in contrary to, for

example, time series analysis they do not consider the

serial impact of order sequences. Only [11] combines

clustering with dynamically changing data.

Apparently, there have been no explicit researches using

time series analysis, which in certain aspects is related to

auditory display, for the identification of dynamic bottle-

necks on planning and feedback data in manufacturing. The

auditory analysis of production data therefore may also be

considered as a first step to time series analysis in bottle-

neck analysis.

3 Auditory data analysis

Auditory display has been established as a scientific dis-

cipline at the first Conference on Auditory Display at the

Santa Fee Institute in 1992. The initiative, which led to the

International Community on Auditory Display (ICAD),1

aimed to bundle different activities in several scientific

fields that examine the potential of information carried by

sound. Auditory display therefore embraces a wide range

of subcategories between the design of sound signals (e.g.,

for monitoring in medical environments or human com-

puter interaction) and auditory data analysis.

Two key events demonstrated the potential of data

sonification essentially. First, the detection of the consis-

tency of the rings of Saturn [12]. Second, the final prove of

the assumption that particle currents in weekly coupled

macroscopic quantum systems would oscillate between the

two systems [13]. Already in 1982, Sara Bly demonstrated

in a case study including the sonification of six-dimen-

sional data ‘‘that the auditory display was at least as

effective as the visual display, and that the combined dis-

play outperformed them both’’ [14]. Numerous researches

in fields such as neurology, theoretical physics, sociology,

or psychology have refined the methodical approaches

toward data sonification [15], including Parameter Map-

ping Sonification (PMS) and Model-Based Sonification

(MBS) for exploratory data analysis [16].

4 Parameter mapping sonification of production data

In order to keep the information transfer (mapping) from a

logistic datum to its representative sound event as imme-

diate as possible, we chose Parameter Mapping Sonifica-

tion (PMS) as method for the auditory exploration of

manufacturing data. The target of this experiment was to

identify the cause of high throughput times of production

1 http://www.icad.org.
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orders and their impact on successive work systems. The

used data sample consisted of planning and feedback data

of sheet metal production including all processes that had

been completed within 1 year. Only orders in a linear work

flow of five work systems (Fig. 1) were regarded.

Any order consisted of one or (mostly) several physi-

cally identical material pieces that were processed inde-

pendently. The throughput time of an order n with k

material pieces m consequently was calculated

TTPn ¼ tend actualðmkÞ � tend previousðm1Þ; ð1Þ

whereas tend actual is the end of operation at the actual work

system and tend previous is the end of operation at the pre-

vious work station.

In the following subsections of this chapter, it will be

demonstrated how we mapped these orders and material

pieces to auditory display. With the sonification software,

developed within this research, we explored the data

sample from three auditory perspectives in order to gain

knowledge about its characteristics. Two of these per-

spectives represented the resource oriented and order ori-

ented views [17] as established in logistics (Fig. 2). An

additional third one (Fig. 3) displayed the sequential pro-

cesses of an order synchronously (synchronous view) in a

single multi-pitched sound (Sect. 4.2).

4.1 Overview of data sample using resource

oriented view

Comparable to throughput diagrams [2], auditory displays

in resource oriented view provide a general overview of

processing at the monitored work systems. As a start-up of

this research, we mapped average and accumulated

throughput times (TTPavg,acc) of all orders at each work

system to sinusoidal sound signals (Fig. 5) with frequency

f(t), which is a function of time, for example, for TTPavg

according to the equation

fiðtÞ ¼ flow � fhigh

flow

� �
PN

ni¼1
TTPni ðtÞ

N
�TTPavg min

TTPavg max�TTPavg min

; ð2Þ

whereas flow,high is the definable frequency range of the

signal, i is the work system, n is the order, N is the number

of orders, TTP(t) is the throughput time at the selected time

unit, TTPavgmin, max define the minimum and maximum

of average throughput times of all orders and systems. This

mapping logarithmically scales the TTP of an order to a

definable frequency range, in our sonifications between 80

and 8.000 Hz. The mapping of accumulated TTPs was

calculated accordingly, summing up TTPs of orders at

work systems. The sum of these individual signals fi(t)

representing work stations i resulted in an auditory display

with signal s:

sðtÞ ¼
X5

i¼1

fiðtÞ ð3Þ

The distribution of signal s in a 180� panorama (Fig. 4)

facilitated the identification of the work systems.

The left half of Fig. 5 shows the spectrograms of the

sonifications of TTPavg and TTPacc at the five work systems

over the time span2 of the data sample. The red rectangles

frame time units3 at which orders exited work systems

(output). The auditory display embraced approximately

twice this range since some orders had very high throughput

times. The spectrograms of TTPavg clearly show steady

states of all work systems inside the red rectangle, while

TTPacc at work system 4 exhibited major fluctuations, which

were subject to further investigations in Sect. 4.2.

To emphasize the individual fluctuations of each work

system, we normalized the analyzed parameters (TTPavg,

TTPacc) multiplying by:

fnorm ¼ 100

TTPi max
; ð4Þ

whereas i is the work system, and TTPmax is the maxi-

mum average (respectively accumulated) throughput time.

Thus, fluctuations of each work system are independently

displayed over the complete frequency range defined

(80–8.000 Hz).

The normalized sonifications of TTPacc (Fig. 5, right

half) indicated potentially mutual (seasonal) impacts of

fluctuations, particularly between work systems 3, 4, and 5,

which we also further investigated by sonifications based

on synchronous and order oriented perspectives.4

Fig. 1 Five linearly coupled work systems as an extract of a major manufacturing network. For detailed analysis, only work systems 3, 4, and 5

were considered

2 Playback speed of sonification can be set arbitrarily in the software.
3 For confidential reasons, time-related information refers to neutral

time unit.
4 Fluctuations of work system 1 and 2 at least partly depended on

incomplete data and therefore were not further considered.
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4.2 Order characterization in synchronous view

Contrary to sonifications in resource and order oriented

view, which maintain the chronology of the data structure

and therefore are related to time series analysis, synchro-

nous view is based on a sorting of orders according to an

arbitrary parameter.

As shown in Fig. 6, all sequential processes of an order

are displayed as synchronous multi-pitched sound signals

s(n) representing the throughput times of operations

according to the equation:

sðnÞ ¼
XN

i¼1

fni
ð5Þ

with

fni
¼ flow � fhigh

flow

� � TTPni �TTP min

TTP max�TTP min

; ð6Þ

whereas flow,high is the definable frequency range of the

signal, i is the work system, n is the order, TTP is the

throughput time, and TTPmin,max is the range of throughput

times over all orders and systems.

Fig. 2 Auditory representation

(b) of order and resource

oriented views (a) in logistics

(Graphics according to Gläsner

and Fastabend [18])

Fig. 3 In synchronous view,

sequential operations of an

order were mapped to a

multi-pitched signal
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Signals s representing orders n create a set A, whereas

A ¼ fsðn1Þ; sðn2Þ; sðn3Þ; . . .; sðnnÞg ð7Þ

The sonification sequentially displays all elements of

A (Fig. 6) in a speed adjustable by the listener. Through the

spatial distribution of work systems (Fig. 4), the listener

can attribute sound events to the corresponding work system

also in synchronous view. Thus, orders are precisely char-

acterized by the frequency distribution of the representing

sounds.5 In the auditory display of TTPs in synchronous

view, we found two evident patterns of orders: One, with

extremely high throughput times at only one of the work

systems and another one with above-average throughput

times synchronously at work systems 3, 4, and 5.6

Fig. 4 Wiring of 5.1 surround

audio system. In the described

experiment, each work system

was mapped to a discrete

speaker in the upper frequency

range (50–40.000 Hz) and

merged in the low registers to a

subwoofer channel

Fig. 5 TTPavg, TTPacc, and normalized TTPavg and TTPacc of the five work systems

5 So to speak ‘‘acoustic fingerprints’’ of orders.
6 The operation times (TOP) at the work systems were of comparable

length and, given the overall duration of TTPs, negligible.
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We selected two orders, order A and order B (Fig. 6),

representing either of these two patterns for an exemplary

detailed analysis in order oriented view. Order A exhibits

extremely high TTP at work system 4. TTPs of order B are

not as high, but above average at the three work systems

taken into account.

4.3 Detailed analysis with order oriented view

Figure 7 shows order A in the auditory representation of

order oriented view (Fig. 2), which was mapped

fni
ðtÞ ¼ flow � fhigh

flow

� �TTPni ðtÞ�TTP min

TTP max�TTP min

; ð8Þ

whereas flow,high is the definable frequency range of the

signal, i is the work system, n is order, TTP(t) is the

throughput time at the displayed time unit, and TTPmin,max

is the range of throughput times of all orders and systems.

The resulting signal s equated to the sum of non-stationary

signals f of orders n at work systems i (Fig. 7):

sðtÞ ¼
XN

ni¼1

fni
ðtÞ; ð9Þ

whereas N is the number of orders.

The sonification of order A (Fig. 7) revealed overlapping

of processes not visible in the graphical representation and

changes of the operational sequence. Noticeable was the

early start (at time unit 699) and the long duration of the

throughput time (TTP) at work system 4, which we further

tracked down by a sonification of the discrete material

pieces, the order consisted of (Fig. 8). The sonification of

the material pieces of order A supported our findings

revealing major deviations of the expected sequence of

operations.

The analysis of order B (Figs. 6, 7, 9) was exemplary for

another cause of high TTPs as we confirmed by further spot

samples. Individually, both material pieces (Fig. 9), order

Fig. 6 Synchronous view of an extract of the data sample. Through-

put times of all operations of an order were displayed as a

synchronous sound. Highlighted orders A and B were subject to

further analysis

Fig. 7 Screenshot of the

schematic graphical display

integrated into the sonification

software displaying an extract

of the data sample. It should be

noted that in case of overlapping

throughput times in one order,

the graphical representations

will also overlap and mask each

other. The sonification displays

the situation correctly
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B consisted of, were produced within average TTPs. Only

their combination as an order caused above-average TTPs

at the regarded work systems. Our findings resulted from

the re-allocation of material pieces to orders, which is

characteristic to sheet metal production.

In order to quantify the amount of orders with high TTPs

(as an indicator for the degree of re-allocation applied) and

to analyze their distribution over the three work systems

during the monitored period, we generated auditory dis-

plays, where each event was sonified at its respective

output time unit only. According to the equation

fn ¼ flow � fhigh

flow

� �n
N

ð10Þ

whereas n is the order (respectively material piece), and

N is the number of orders (or material pieces), a static

frequency was attributed to each order according to its first

entry into the monitored scenario.

For a linear workflow respecting first-in-first-out sequencing

rules (FIFO), this mapping would result in a constantly

increasing sweep (Fig. 10) at each work system.

The sonifications of orders and material pieces (Fig. 11)

indicated an increase in deviations to the main sweep during

the course of time. While there was a common tendency in

both sonifications, it was noticeable that particularly the

material pieces at work system 4 were affected by extended

TTPs, which can also visually be identified by the high

amount of low frequencies in the spectrogram, but the lis-

tening results were much more detailed. The sonification of

material pieces at work system 5 displayed a similar trend

containing a high amount of dispersing frequencies. How-

ever, the amount of low frequencies toward the end of the

sonification was clearly less. Considering the large amount of

high TTPs of these results, it seemed surprising that the

average throughput time (TTPavg) of all work systems was at

a more or less constant level (Fig. 5).

In order to get a more refined understanding of the

distribution of TTPs over the monitored production period,

we applied further sonifications using synchronous view.

Orders and material pieces were sorted by their respec-

tively highest TTP. The output time unit at the respective

work system was correspondingly mapped as pitch (fre-

quency). Except for orders with extremely high TTPs

(about 8 % of data sample, which exhibited a volatile

behavior), the spectrograms (Fig. 12) show periodically

increasing sweeps. This means that most values of TTPs

were consistently distributed over the monitored period and

explains the quite stable average TTPs stated before.

For the volatile phase of this sonification (Figs. 12, 13), we

found quite different structures of the distribution of TTPs

between orders and material pieces. A sonification using

band-passed noise to additionally sonify the corresponding

TTPs showed that, after a burst of extreme TTPs at work

system 4, high TTPs of material pieces mostly were attributed

to work system 3, whereas compound to orders, TTPs con-

siderably contributed to work systems 4 and 5.

5 Conclusion and discussion

For the chosen data sample of sheet metal production, we

demonstrated that high throughput times were concealed

Fig. 8 Throughput times of material pieces of order A

Fig. 9 Throughput times of material pieces of order B
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by a relatively consistent distribution. We also revealed that

high throughput times resulted from inappropriate re-allo-

cations of material pieces to orders. Considering that around

8 percent of orders were affected by very high throughput

times and given the synchronous distribution of orders with

long and short throughput times mentioned above, we expect

that there is reasonable potential for improvements by

reducing re-allocations to a minimum level.

Particularly in combination with traditional and advanced

statistical methods [2, 10], auditory data analysis becomes a

powerful addition that distinctly indicates seasonal fluctua-

tions of processes and allows to partition data samples into

expedient segments for further analysis.

At this stage of our research on auditory data analysis of

production data, it can be said that the questions, which

arose during the experiments, differed from the ones

usually asked using only established analysis approaches.

These questions finally revealed results, which had not

been analyzed by traditional methods performed before-

hand. Analogue to the function of an engineer as a

‘‘hypotheses generator’’ in a recursive data-mining process

[9], in its approach to data itself lies a major benefit when

using auditory display.

Auditory data analysis requires specialized expertise and

experience that make it unsuitable for internal company

use. Hence, an application would be well embedded in

logistic consultancy projects as an additional analysis tool

in order to re-adjust production planning and control

strategies in industry.

One of the major problems of the introduced approach is

a meaningful graphical transformation of auditory displays

in order to fulfill scientific standards. Up to now, graphical

Fig. 10 Deviations of FIFO

sequencing rule, represented by

an increasing sinusoidal sweep

Fig. 11 Sonification of data set

using statically attributed

frequency to orders or

respectively material pieces
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representations and written descriptions can only be

understood as hints toward the far more detailed informa-

tion sonifications provide.
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