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Abstract Metabolism is a fascinating natural production

and distribution process. Metabolic systems can be repre-

sented as a layered network, where the input layer consists

of all the nutrients in the environment (raw materials

entering the production process in the cell), subsequently to

be processed by a complex network of biochemical reac-

tions (middle layer) and leading to a well-defined output

pattern, optimizing, for example, cell growth. Mathemati-

cal frameworks exploiting this layered-network represen-

tation of metabolism allow the prediction of metabolic

fluxes (the cell’s ‘material flow’) under diverse conditions.

In combination with suitable minimal models, it is possible

to identify fundamental design principles and understand

the efficiency and robustness of metabolic systems. Here,

we summarize some design principles of metabolic sys-

tems from the perspective of production logistics and

explore, how these principles can serve as templates for the

design of robust manufacturing systems.

Keywords Systems biology � Metabolic networks �
Enzymes � Design principles � Simulated evolution

1 Introduction

There is a deep intrinsic parallel between the metabolism

of biological cells and industrial production. Cells function

efficiently under typical environmental conditions. At the

same time, they are viable (thus maintaining a certain level

of function) across a vast range of atypical environments. It

is precisely this robustness with respect to large changes

(and significant fluctuations) in the composition of the

environment (the ‘input pattern’) that makes metabolic

networks a potentially very interesting role model for tech-

nical production and distribution systems (see, e.g., [1]).

The network of metabolic reactions in a cell is respon-

sible for providing a wide range of substances at the right

time in the right proportions for a specific purpose of

consumption. At the same time, metabolic systems con-

struct complicated chemical substances out of nutrients

taken up from the environment. With several thousands of

interacting machines (enzymes, catalyzing biochemical

reactions), the underlying production network is about as

complex as the most involved processes of industrial pro-

duction. The key challenges are comparable: How do

systems in both domains ensure robustness with respect to

perturbations? How can these systems react rapidly to

important changes in their environment by ensuring the

achievement of the logistics targets? For metabolism, the

young scientific discipline addressing these questions in a

strong interplay between mathematical approaches and

experimental efforts is called Systems Biology. It is a

‘melting pot’ of many scientific fields, contributing to the

understanding of the larger-scale organization of living

cells and their dynamic behavior in response to external

and internal stimuli, including disease development (see,

e.g., [2, 3, 4]). Systems Biology is situated at the inter-

section between the Biological Sciences, Mathematics,

Statistical Physics, Biophysics, and Computer Science. For

the part of Systems Biology discussed here, the principal

aim is not the representation of a cell in a computer, but

rather it is about understanding function beyond the level
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School of Engineering and Science, Jacobs University, Campus

Ring 1, 28759 Bremen, Germany

e-mail: m.beber@jacobs-university.de

M.-T. Hütt
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of a few elements: How is robustness achieved? How can a

system react rapidly to changes in the environment?

The parallel between metabolism and manufacturing has

been emphasized by others before (e.g., [5, 6]; see also [7]).

Systems Biology has over the last 6–8 years provided a

remarkable basis for a more refined, detailed and quanti-

tative comparison of these two realms. In the present paper,

we repeat some of the arguments from Beber et al. [8] and

briefly review two articles exploring abstract model rep-

resentations of metabolic systems [1, 9].

Our focus here is on metabolism as a potential ‘tem-

plate’ for manufacturing systems. Other biological princi-

ples, like adaptation, self-organization and aspects of

biological evolution have been explored to allow manu-

facturing systems to deal with environmental variability

and internal fluctuations. Two important examples are the

framework of Biological Manufacturing Systems (see, e.g.,

[10, 11]) and the idea of Emergent Synthesis [12], which

suggests that regulation on all scales requires integration in

a self-organized fashion.

The aim of this paper is to review some material from

Systems Biology on the functioning of metabolism and

then show, how abstract model representations of meta-

bolic systems can serve as a starting point for transferring

metabolic design principles to industrial production. We

first describe the general features of metabolic systems that

form the basis of a comparison with industrial production

(Sect. 2) Next, we discuss a broad range of recently iden-

tified metabolic design principles of interest to manufac-

turing (Sect. 3) In Sect. 4, we then explore the possibility

of constructing abstract model representations of metabolic

systems that are suitable interfaces between Systems

Biology and industrial production, helping us to transfer

such knowledge into manufacturing contexts. Lastly, in

Sect. 5, we discuss, how such biological understanding, in

particular of design principles of metabolic systems, can

serve as templates for robust technical and industrial

systems.

2 Metabolism from a production logistics perspective

Metabolism is at the same time a transportation network, an

assembly line, and a storage depot. Substances are taken up

from the environment (by exchange reactions) and distrib-

uted in the cellular compartments (by transport reactions).

Large parts of metabolism are responsible for degrading

complex substances into more elementary building blocks

(catabolism). These chemical building blocks are used in the

formation of more complex compounds (anabolism) that are

needed for cellular maintenance, growth or storage. The

elementary organizational unit of metabolism is the indi-

vidual biochemical reaction, often represented by the

enzyme (or enzyme complex) serving as catalyst for a

reaction. Qualitatively speaking, the exchange reactions can

be regarded as an input layer, followed by a complex

intracellular processing layer. In many modeling approa-

ches, the overall goal of metabolic function is abstracted as a

(fictitious) biomass reaction, where each component enter-

ing this reaction is known to contribute to cell growth.

Figure 1 (left) summarizes this situation.

The flow of substances through the metabolic network is

the cell’s equivalent of the complex material flows

encountered in industrial production. The enzymes repre-

sent machines responsible of constructing well-defined

products out of a specific set of incoming materials.

The appropriate mathematical tools for analyzing suc-

cessful configurations of metabolic systems on the scale of

Fig. 1 Network representations

of cellular metabolism

(schematic view), together with

the projection of the bipartite

representation of metabolism

(left) to a metabolite-centric

graph (right; top) and to an

enzyme-centric graph (right;
bottom). Figure adapted from

Smith and Hütt [13]

80 Logist. Res. (2012) 5:79–87

123



a whole cell (rather than an individual metabolic pathway)

are constraint-based modeling and, more specifically, flux-

balance analysis (FBA), reviewed, for example, in [14, 15].

FBA can be used to predict metabolic flux distributions

(the biological equivalent of material flow) under various

nutrient input patterns and for diverse cellular objective

functions (serving as the output pattern of the system

maximized during flux-balance analysis).

Within the elegant framework of flux-balance analysis,

the optimal steady-state distribution of metabolic fluxes

can be predicted, given the structure of the environment

(the availability of nutrients) and the cellular objective

function (e.g., biomass production or ATP maximization).

The objective function, serving as the output pattern of the

system, is maximized during flux-balance analysis. FBA

has a similar methodological core to many optimization

problems in logistics, namely linear programming. It is

capable of serving as an interface between the biological

and biochemical foundations of metabolic systems and the

representation (and conceptual understanding) of metabo-

lism as a complex network.

In virtually all Systems Biology studies, statistical meth-

ods play an important role in identifying the intrinsic mech-

anisms behind the performance of a system. More precisely,

the analysis of system-wide information with any statistical

methods requires a clear concept of a null hypothesis, a

random background, against which the observations can be

compared. Expressing levels of cellular organization in terms

of networks has turned out to be particularly helpful for the

task of formulating the appropriate null models. The strength

of graph theory is that it can represent a complex system in a

unified formal language of nodes and links.

A suitable network representation of metabolic systems

is a bipartite graph, that is, a graph with two types of nodes

(here: metabolites and enzymes) interacting in an alter-

nating fashion. Typically, projections of this bipartite graph

are discussed: a metabolite-centric projection, where two

metabolites are linked, if an enzyme catalyzes the con-

version from one to the other; a enzyme-centric projection,

where two enzymes are linked, if they share a common

metabolite. Figure 1 illustrates the three network repre-

sentations of metabolism.

At this point, we wish to emphasize that in spite of the

apparent simplicity and autonomy of metabolism as a

network converting an input vector (nutrients) into an

output vector (biomass), metabolism is also embedded in

an intricate system of regulation, the gene-regulatory net-

work and the regulatory action of genome structure (see,

e.g., [16]).

How are complex networks characterized? The degree

of a node is the number of links entering or leaving this

node. It is thus the number of direct neighbors of a node. A

network with a degree distribution given by a power law is

called ‘scalefree’, because such networks do not contain a

particular scale of reference: There is no typical (e.g.,

average) degree of a node. The degree is a node property

spread over several orders of magnitude. In a scalefree

network, the vast majority of nodes only have very few

links. At the same time, the network contains nodes, which

have several orders of magnitude more links. These hubs

are topologically the most important system components. It

is surprising that many natural and technical systems seem

to follow this scheme (see, e.g., [17]).

Remarkably, the degree distribution of the metabolite-

centric graph approximates a power law. Thus, the most

appropriate random network representation of this graph is

a scalefree graph [18]. Early studies on metabolic network

topologies mostly focused on this broad degree distribution

of the metabolite-centric graph [19, 20, 21]. In contrast, the

degree distribution of the enzyme-centric projection has a

rather narrow peak with no heavy tail and thus more

resembles an Erd}os-Rényi (ER) random graph [22].

All these observations are interesting starting points for

a quantitative comparison of metabolic systems and

industrial manufacturing systems. While many character-

istics of network architecture are similar between the two

types of production systems (metabolic and industrial), in

[23] striking differences on the level of dynamical quan-

tities (in particular, material flows) are observed. More

details on all of the topics listed in this Section can be

found in [8].

3 Metabolic design principles

Metabolic networks are at the same time scalefree [19],

modular [24], layered (one can for example distinguish

between the input layer given by the set of uptake reaction,

the collection of all reactions directly contributing to bio-

mass as an output layer, and a ‘processing layer’ consisting

of all reactions in between) and bipartite (with metabolites

and reactions/enzymes forming the two sets of nodes).

Their projections contain two categories of bidirectional

links (a bidirectional link can be truly bidirectional or the

co-occurence of two opposite unidirectional links), as well

as substantial degree correlations (see, e.g., [25]). These

complications all make it a formidable challenge to explore

the interrelations between network topology and dynamical

function for metabolic systems [26, 27].

Many attempts have been formulated over the last

7 years to understand the structure of metabolic networks

from first principles using evolutionary or biochemical

arguments [28, 29, 30, 31, 32]. Robustness of metabolic

networks beyond the single-knockout level (i.e., with more

severe perturbations than the loss of a single enzyme) has

been explored using flux-balance analysis [33] and
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elementary flux modes [34]. Several works have argued

that the network topology of metabolic systems is mark-

edly optimized for robustness. The study by Marr et al.

[35] uses binary probes to measure, whether fluctuations

are on average dampened out or enhanced on metabolic

network architectures.

There seems to be a selection for minimal metabolic

pathways, given the environmental conditions (i.e., the set of

available nutrients). The accessible nutrients for a species

may thus be inferred by analyzing the network topologies

[36].

Temperature differences of typical habitats correlate

with structural differences in metabolic networks [37], a

phenomenon that can be qualitatively reproduced in a

simple model involving gene duplications [38]. On a more

theoretical side, suitable definitions of a metabolic ‘null

model’ have been formulated recently [39].

For the bacterium, Escherichia coli, the remarkable

success of flux-balance analysis in predicting growth rates

for mutants has been demonstrated by Fong and Palsson

[40]: Even though FBA over-estimates the initial growth

rate for most single-gene mutants, in many cases, an

adaptive evolution over several generations will allow the

cells to converge to the computationally predicted growth

rates.

A refined method [41], called ‘minimization of meta-

bolic adjustment’ (MOMA), selects the mutant flux com-

position relative to the flux composition of the unperturbed

system (the ‘wildtype’). The view that MOMA rather

predicts the initial growth rates of mutants, while FBA

predicts the maximally achievable growth rates has been

used to establish the concept of ‘synthetic rescues’ [42]

(see also [43]): On the basis of these growth-rate differ-

ences between MOMA and standard FBA predictions,

compensatory mutations can be applied selectively to the

differences between the underlying flux distributions pre-

dicted by MOMA and standard FBA, respectively. These

compensatory mutations transform the lower MOMA

growth rate into the higher FBA growth rate.

Among the approaches mentioned so far, three seem of

particular interest for application to manufacturing sys-

tems: (1) elementary flux modes, which is the counting of

the number of paths compliant with certain subsidiary

conditions; in this way, the importance of a system com-

ponent is represented by the number of paths it is involved

in; this general principle may well be applicable to man-

ufacturing (see [44] for a first attempt in this direction); (2)

evaluating network robustness with simple dynamic

probes; often, it is unfeasible to perform realistic dynami-

cal simulations due to limited knowledge of the large

number of parameters; the organization of binary dynamics

on a network may provide a rapid orientation, which sites

are prone to large fluctuations; (3) restoring a function lost

due to component failure by compensatory perturbations,

as in the case of synthetic rescues; the low-performance

states a system settles into under component failure may be

local optima, and additional targeted perturbations may be

necessary to guide the system into a (more) global opti-

mum; for metabolism, the various forms of flux-balance

analysis are capable of providing clear practical guidelines

for the compensatory perturbations.

4 Abstract models of metabolic systems

On the technical level, in spite of the deep functional

parallels between these two systems—material flow in

processes of industrial production and metabolic flow in

biochemical networks in cells—and the strong similarities

in challenges and unsolved problems, methodological

exchanges and attempts of quantitative comparison are

difficult. They are in particular impeded by the lack of a

common terminology and common formal representation

of these systems. Identifying design principles in abstract

model representations can provide guidelines, what signa-

tures of, for example, robustness to expect, how to search

for them in data and how to transfer the ‘structural essence’

of an enhanced function (like robustness) into the other

realm. Here we will briefly summarize our work on two

such abstract model representations at the interface of

metabolism and industrial production: generic flow net-

works and networks of cyclic machines.

4.1 Generic flow networks

Recently [9], we analyzed the successful networks in the

Kaluza–Mikhailov model of evolved flow networks,

exploring their topological properties in more detail than in

the previous work [45, 46, 47]. The networks consist of

three distinct layers: an input layer that may only connect

to the intermediate layer of nodes; the middle layer that

may interconnect and are also linked to the input and

output nodes; output nodes that have only incoming links

from the middle layer. The process invoked on these net-

works is one of the flow distributions. A unit flux is applied

to each input node. At each node, the incoming flux is

distributed equally over all outgoing links, before it is

finally gathered again at the output nodes. For each net-

work, a prescribed output matrix (the ‘target structure’

during the simulated evolution) is determined in a random

process, prescribing the proportions, in which each input

should reach the outputs. The matrix is thus a set of output

vectors, one per unit flux inserted in each input node.

Given a network with random initial links and a pre-

scribed output pattern, two distinct goals are required of the

evolutionary algorithm, yet both goals depend on the
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output pattern. The first goal, and thus the first phase of the

evolution, is to adjust the topology of the network in such a

way that its output matches the prescribed pattern. This is

achieved with a simulated annealing that minimizes a

quantity termed ‘flow error’, a sum of squares over the

difference between elements of the actual output and the

prescribed pattern. We call the first phase of the evolution

‘pattern recognition’.

In a second phase of the evolution, the topology of the

network is further altered to maintain an output with a flow

error below a threshold in the presence of certain types of

damage. The damage applied to these networks is either

removal of links, removal of nodes, or small fluctuations of

the connectivity of the network, leading to ‘link-robust’,

‘node-robust’ and ‘noise-robust’ networks. We will refer to

this second phase as ‘robust pattern recognition’.

Examples of evolved node-robust networks at three

different ‘complexities’ of the output pattern (given by the

orthogonality of the individual output vectors and thus

measuring, how distinct the individual goals are that each

output vector provides) are shown in Fig. 2.

The evolved flow networks show strikingly clear topo-

logical signatures that we can attribute to function (like

modularity) and robustness (like the subgraph composition

and degree correlations, depending on the specific type of

robustness enhanced during the simulated evolution). In

Fig. 2, the strong modularity, as well as the increase in

modularity with output pattern complexity, is clearly

visible.

From our perspective, the results of [9, 45, 46, 47] on the

subgraph composition and the modularity of robust evolved

flow networks suggest that a specific imprint of robustness

and function in the network topology can also be expected

for metabolic networks and manufacturing networks. On

the basis of these studies, we now come to a set of

hypotheses relevant to general flow systems and potentially

testable in empirical observations: (1) Output pattern

complexity regulates the modularity of the successful net-

works. (2) If the network is robust against link removal, we

should see a specific motif signature; if on the other hand

the network is robust against node removal, we may expect

negative degree correlations (even though we assume that

other not yet identified topological features may also help

characterizing node and noise-robust networks and may

even discriminate between node and noise robustness).

As already mentioned in the Introduction, one can think

of metabolism as a layered flow system, much like the flow

networks in the Kaluza–Mikhailov model. The input layer

is given by the available nutrients (or, more specifically, by

the list of uptake reactions capable of metabolizing those

nutrients), while all reactions directly contributing to the

cellular objective function (the required ‘output pattern’;

e.g., biomass production) can be summarized as output

nodes. The robustness of metabolic systems against various

forms of perturbations, as well as the modularity of met-

abolic systems, has been under intense investigation in

systems biology (see, e.g., [48, 15, 34]). Across species, the

size of the input layer and the diversity of the environments

vary substantially. The impact of environmental diversity

and other habitat properties on network architecture have

been discussed from a variety of perspectives (see, e.g.,

[49]). The relevant ‘pattern recognition’ task for metabolic

networks is to convert the diverse, given set of input pat-

terns all into optimal outputs. We thus expect the modu-

larity of the metabolic networks to positively correlate with

the environmental diversity. Some evidence for this rela-

tionship can be seen in [36]. Additionally, we expect that

biological evolution has enhanced the robustness of meta-

bolic networks against the loss of enzymes, rather than the

loss of metabolites. On the basis of the results from [9, 45,

46, 47], we therefore expect a very specific subgraph

composition of metabolite-centric metabolic networks.

Some evidence for a non-random subgraph signature of

metabolic network is found in [50, 25]. Due to the proper

selection of a metabolic null model (see also [25, 39]), the

computation of a reliable motif signature of metabolic

networks is non-trivial and has yet to be done.

4.2 Networks of cyclic machines

In [1], first steps toward a framework suitable for modeling

scenarios from traffic, metabolism, and production logistics

have been presented. In particular, cyclic machines (peri-

odic devices) are taken as the basic constituents of the

system and explore how they shape system behavior. Fig-

ure 3 summarizes the representation of machines and

enzymes as periodic devices. A commonly used production

logistics model, the throughput element, describes the

different phases of processing that are repeated in a specific

operation [51]. The phases are divided into inter-operation

time (consisting of transport time and waiting time of the

material) and operation time (consisting of setup time and

actual processing time of the machine). Therefore, a

machine cycles through the two states of setup and oper-

ation for each production lot (Fig. 3a). The observation that

enzymes can be represented as interacting cyclic machines

capable of synchronization and collective behaviors goes

back to Stange et al. [52].Similarly, in order to depict the

cyclic performance of allosteric enzymes that bind sub-

strate and regulatory molecule, release product, and resume

their initial state, Casagrande et al. [53] used a stochastic

phase oscillator model (Fig. 3c). In fact, all catalytic

enzymes that are returned to their initial state inherently

have a cyclic nature (see Fig. 3b) that can be used for such

an abstraction (and the vast majority of enzymes belong to

this category). Generally, enzymes (or enzyme complexes)

Logist. Res. (2012) 5:79–87 83

123



catalyze a specific reaction as long as the substrates are

present at favorable concentrations, until there is a regu-

lation event that prevents them from processing the com-

pounds involved, or until they are removed from the cell

by, for example, degradation.

What can be achieved with such an abstract model

representation? Even though some of the organizational

features are comparable, transportation, manufacturing and

metabolism all are represented by very different network

architectures and are controlled by very different regula-

tory systems. It is therefore not a priori clear that

optimization methods from one domain can be applied

successfully in another domain. A proof of principle has

been given in [1], where a strategy (adaptive control) from

one domain (traffic modeling, see [54, 55]) can also be

successfully applied to the other domains (industrial pro-

duction, metabolic systems).

Extending the formal view of periodic devices charac-

terized by a phase variable to (empirical and simulated)

data from a large-scale transportation system, in [56], the

synchronization of arrival/departure events in the network

of long-distance train connections has been analyzed. It has

(A)

(B)

(C)

node-robust; low complexity

node-robust; medium complexity

node-robust; high complexity

Fig. 2 Example of evolved node-robust flow networks arising in the Kaluza–Mikhailov model with increasing output pattern complexity. Input

nodes, middle nodes and output nodes are diamonds, ellipses and house-shaped polygons, respectively. Figure adapted from Beber et al. [9]
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been shown that the performance (in a very general sense)

of a given timetable of train connections is essentially

determined by its phase pattern and thus the intrinsic levels

of synchronization. The results show a clear and surprising

negative correlation between the synchronization index of

a station and its robustness to delays. This negative cor-

relation between synchronization and robustness that was

observed in the data could also be understood in a minimal

model of delay propagation [56].

5 Conclusion

The main purpose of the present article is to emphasize the

strong parallel between metabolic systems in a biological

cell and processes of industrial production. Putting the

diverse findings together that have emerged from Systems

Biology investigations over the last decade, we start to

understand, how production systems in biological cells

compute efficient metabolic states under diverse environ-

mental conditions. Specifically, we have made some pro-

gress over the last years in understanding some design

principles of metabolic systems (e.g., [35, 57]) and making

them accessible to industrial production [8, 23]. For

addressing such ‘transferable’ metabolic design principles,

we employed abstract model representations of metabolic

systems [9, 1] and the analysis of biological data [58] in

combination with flux-balance analysis [16, 57] and the

exploration of metabolic networks with dynamic probes

[35]. The next natural steps are to quantitatively compare

material flow in both domains and understand the rela-

tionships between fluctuations in supply and demand on the

one hand and material flow patterns (or effective network

architectures) on the other.

From our perspective, the most important topic to be

addressed jointly by the two disciplines, Systems Biology and

Production Logistics, is systemic robustness. The balance

between the antagonistic pair of requirements, efficiency and

robustness, is of broad interest across many disciplines,

ranging from industrial production to cell biology and ecol-

ogy. Lack of robustness due to too high efficiency is related to

the notion of systemic risk, which has recently been discussed

from a theoretical perspective, for example in the context of

complex economical systems (see, e.g., [59]).

For cellular processes, this balance between efficiency

and robustness has been explored in a multitude of ways

resorting to both analysis of experimental data and the

mathematical modeling of cellular processes. Motivated by

graph theory and nonlinear dynamics, an influential trend in

systems biology at the moment is to relate robustness to

small regulatory devices [60, 61], serving, for example, as a

noise buffer or providing a suitable amount of redundancy

for maintaining systemic function even under perturbations.

With these thoughts, we hope to contribute to the onset

of a rich and stimulating dialogue between the two disci-

plines, Systems Biology and Production Logistics.
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35. Marr C, Müller-Linow M, Hütt MT (2007) Regularizing capacity

of metabolic networks. Phys Rev E Stat Nonlin Soft Matter Phys

75(4 Pt 1):041917

36. Borenstein E, Kupiec M, Feldman MW, Ruppin E (September

2008) Large-scale reconstruction and phylogenetic analysis of

metabolic environments. Proc Natl Acad Sci USA 105(38):

14482–14487

37. Takemoto K, Nacher JC, Akutsu T (2007) Correlation between

structure and temperature in prokaryotic metabolic networks.

BMC Bioinform 8(1):303

38. Takemoto K, Akutsu T (2008) Origin of structural difference in

metabolic networks with respect to temperature. BMC Syst Biol

2(1):82
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41. Segrè D, Vitkup D, Church G (2002) Analysis of optimality in

natural and perturbed metabolic networks. Proc Natl Acad Sci

USA 99(23):15112–15117

42. Motter AE, Gulbahce N, Almaas E, Barabási AL (2008) Pre-

dicting synthetic rescues in metabolic networks. Mol Syst Biol

4:1–10

43. Kim DH, Motter AE (2009) Slave nodes and the controllability of

metabolic networks. New J Phys 11(11):113047
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