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Abstract In this paper we review global optimization

techniques and their application to location problems. The

following techniques are reviewed: Big Square Small

Square, Big Cube Small Cube, Big Triangle Small Trian-

gle, Big Segment Small Segment, DC Optimization and the

Ordered Median formulation. These techniques are

described, and examples for their implementation for var-

ious location problems are given.

Keywords Facility location � Global optimization � DC

optimization � Ordered median

1 Introduction

Planar facility location problems were investigated by

mathematicians for hundreds of years [32, 54]. In the last

50 years, with the advent of computers, operations research

and logistics practitioners recognized the importance of

such models in providing efficient and cost-effective

solutions to logistics problems. There are many applica-

tions to facility location models. For example:

• Desirable Facilities: warehouses, schools, post offices,

public swimming pools, product positioning, cell phone

transmission towers.

• Competitive Facilities: stores, shopping malls, restau-

rants, gas stations, bank branches.

• Emergency Facilities: hospitals, fire stations, ambu-

lance depots, police stations.

• Obnoxious Facilities: airports, jails, nuclear power

plants, dump sites, polluting factories.

• Miscellaneous Models: satellite orbits, roads, networks.

Common to these models is that (a) a set of demand

points is given, and (b) the objective function is a function

of the distances between demand points and the unknown

locations of the facilities. The first proposed location

problem is the Weber problem which seeks the location of

a facility minimizing the weighted sum of distances to the

demand points [32, 54]. This model is in the category of

desirable facilities because shorter distances are preferable.

The objective of competitive facility location models is to

locate facilities that attract the most buying power associ-

ated with demand points in the presence of competing

facilities. A typical objective function in emergency facil-

ities models is the minimization of the maximum distance

to all demand points. A typical objective function in

obnoxious facility models is the maximization of the

minimum distance to demand points.

We first present the ordered median formulation that

provides a unified scheme to model many of the location

problems discussed above. We then review various global

optimization techniques to solve planar location problems

that are based on a non-convex objective.

When the objective function is convex, finding the

optimal solution is relatively easy. There is only one local

optimum which must be the global one. A simple gradient

search results in the optimum. However, when the objec-

tive function is not convex, and thus there may be many

local optima, finding the optimal solution may not be that

easy. Many heuristic algorithms terminate with a local

optimum. The value of the objective function at a local

optimum may be unacceptably higher than the optimal

value of the objective function. For example, the planar
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p-median problem is known to possess many local optima.

If the heuristic algorithm is fast enough, then a multi-start

approach may be implemented and the solution with the

best value of the objective function selected.

For some problems a finite set of dominating set of

candidate locations can be found, and algorithms scanning

such dominating points can be constructed. However, the set

of dominating points may be very large and lead to intrac-

table algorithms even for a moderate number of demand

points. For many years, researchers and practitioners applied

heuristic approaches to obtain reasonably good solutions to

single facility location problems. Even the more recent

metaheuristic approaches such as tabu search, genetic

algorithms and variable neighborhood search can only

guarantee finding a local optimum. Recently, various effi-

cient approaches that find the optimal solution were pro-

posed. Such approaches, some not published yet, are briefly

discussed and examples for their implementation given.

Topics discussed include in the following:

• The Ordered Median formulation.

• Big Square Small Square (BSSS).

• Big Cube Small Cube (BCSC).

• Big Triangle Small Triangle (BTST).

• Big Segment Small Segment.

• The principle of DC Optimization.

• A general algorithm using DC optimization.

• General algorithms using the Ordered Median

formulation.

Many of these approaches can be implemented to

solving optimization problems that are based on two vari-

ables and may even apply to any small number of vari-

ables. Therefore, some of the methods described here have

general implications to solving many other optimization

problems.

2 The Ordered Median formulation

The Ordered Median formulation is a unified approach for

many location problems [36, 46]. Suppose there is a set of

distances di(X) for i = 1, …, n. The distances are sorted,

and the sorted vector is defined as d(1) B d(2) B … B d(n).

The Ordered Median formulation is based on an objective

function of the type
Pn

i¼1 kidðiÞðXÞ for a fixed set of ks. For

a comprehensive discussion of the Ordered Median for-

mulation, the reader is referred to [46].

2.1 Simple examples for the vector k

• Sum: (1, 1, …, 1).

• Min: (1, 0, 0, …, 0).

• Max: (0, 0, …, 0, 1).

• Truncated mean: (0, …, 0, 1, …, 1, 0, …, 0).

• Median (even): (0, …, 0, 1/2, 1/2, 0, …, 0).

• Range; (-1, 0, …, 0, 1).

• Average of k largest: (0, …, 0, 1/k, …, 1/k).

2.2 More contrived examples that may not ‘‘look like’’

ordered median

1. Fitting a concentric circle [26]

The minimum absolute deviation of distances is

Min
X;R

FðX;RÞ ¼
Pn

i¼1 diðXÞ � Rj j
� �

. It can be shown

that R is the median of distances. Suppose that n is

even. The absolute value of distances below the

median is R-di(X), and above the median it is di(X)-R.

There is an equal number of distances bellow the

median and above the median and therefore the R’s

cancel out in the sum. Therefore, for the median R:

FðXÞ ¼
P

i [ n=2 dðiÞðXÞ �
P

i� n=2

dðiÞðXÞ and k =

(-1, … -1,1, …, 1).

2. Minimizing the numerator of the Gini coefficient of the

Lorenz curve [18]:

FðXÞ ¼
Xn

i;j¼1

diðXÞ � djðXÞ
�
�

�
�

In this sum, when the absolute values are expressed

explicitly, the smallest distance is negative n - 1 times

and positive 0 times. The second smallest is negative n - 2

times and positive once, and so on, yielding k = (-(n - 1),

-(n - 3), -(n - 5), …, ? (n - 1)).

3 Geometric branch and bound techniques

Global optimization is defined as finding the global opti-

mum to a non-convex objective function with possibly

many local optima. Usually the solution methods are based

on a branch and bound approach. For a successful appli-

cation of such techniques, an efficient lower bound (for

minimization) or upper bound (for maximization) is

required. There are four branch and bound approaches to

locating a single facility. We describe in more detail the

original Sect. 3.1 [37]. The other three algorithms are based

on this basic method.

3.1 Big Square Small Square (BSSS)

The Big Square Small Square was suggested by Hansen,

Peeters and Thisse [37] and generalized by Plastria [47].
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Consider a minimization problem in a feasible area. The

following is the branch and bound procedure. We implic-

itly assume that the value of the objective function at

infeasible points is higher than the optimum, which can be

achieved by a penalty added to non-feasible solutions or

requires checking feasibility during the process. A relative

accuracy e is given.

• Start with a big square that includes an optimal

solution. The set of squares consists of the big square.

• The value of the objective function at the center of the

square (another point can be selected when it is

advantageous) is used to generate the best-known

solution (BK).

• Split the square into four small squares by lines through

its center parallel to its sides as is shown in Fig. 1.

• Calculate the value of the objective function at the

center of each of the four small squares. Update BK if

necessary.

• Calculate a lower bound on the value of the objective

function for each of the small squares.

• Discard all small squares for which LB C (1 - e)BK.

• Add the remaining small squares to the set of squares,

and remove the big square and all other squares for

which LB C (1 - e)BK.

• Select the square in the set of squares with the lowest

LB as the next ‘‘big square.’’ Other selection rules are

possible.

• Split the big square into four small squares, and repeat

until there are no squares left in the set.

• The BK is within e of the optimal solution.

The efficiency of the procedure depends mainly on the

quality of the lower bound in a square.

3.2 Big Triangle Small Triangle (BTST)

The procedure Big Triangle Small Triangle (BTST) by

Drezner and Suzuki [22] is based on the same idea as BSSS

but using triangles rather than squares. The feasible area

(usually the convex hull of demand points) is triangulated

by the Delaunay triangulation [43] using demand points as

vertices. The initial set of triangles is the result of the

triangulation rather than a ‘‘Big Square.’’ During the pro-

cess big triangles are split into four small triangles as

depicted in Fig. 2. Note that the small four triangles have

the exact same shape as the big triangle.

There are two main advantages of BTST over BSSS: (1)

If there is a feasible region that can be expressed as a union

of polygons such as the convex hull of the demand points

which is one polygon, no feasibility check is required for

BTST because all the points in a triangle are ‘‘automati-

cally’’ feasible. However, when BSSS is used, points need

to be checked for feasibility unless infeasible points are

known to be inferior. A clear example is obnoxious facility

location when being farther from demand points leads to

better value of the objective function, and if the problem is

unconstrained, the optimal solution is at infinity. Suppose

that we wish to find a solution in the convex hull of demand

points (or any union of convex polygons). The optimal

solution inside a ‘‘big square’’ is likely to be at one of the

vertices of the square outside the convex hull. A special

care is needed to make sure that the points considered are

feasible. When upper bound (for minimization) and lower

bound (for maximization) are sought, the value of the

objective function at a point in the square, such as

the center of the square, is calculated. What if the center of

the square is infeasible? Also, an efficient bound may be

more difficult to construct because the bound should be

based only on points in the feasible part of the square. (2)

There are no demand points in the interior of a triangle (true

for both the Dealunay triangles and all subsequent ones)

which may help in constructing an efficient lower bound.

There are two main disadvantages to BTST: (1) The initial

set of triangles has close to 2n triangles which may be a

waste. (2) The idea cannot be generalized to more than two

dimensions as is done in BCSC [49]. There is no clear way

to split a k-dimensional polyhedron into smaller polyhedra.

Convergence of the BTST algorithm is discussed in [31]

where a bound on the number of generated triangles is

established.

Examples (all can be solved by BSSS or BTST):

• Mixed weights Weber problem [25, 53].

• Obnoxious facility [5, 22, 37].

• Huff competitive location models [1, 11, 34, 52].

• Competitive Model with a threshold objective [19].

• The Weber problem with a threshold objective [15].

• Inventory-Location Problem [30].

• Minimize the variance of distances [12, 33].

• Minimize the range of distances [12, 33].

• Location with acceleration-deceleration [17].

Fig. 1 Splitting a big square

into four small squares

Fig. 2 Splitting a big triangle

into four small triangles
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• Maximize cover with gradual cover objective [31].

• Location with limited distances [29].

• Locating objects in the plane such as segments, arcs of

circumferences, arbitrary convex sets, their comple-

ments or their boundaries [7].

• Lost demand in a competitive environment [13].

• Location of a Facility Minimizing Nuisance to or from

a Planar Network [16].

• Solving Scheduling and Location Problems in the Plane

Simultaneously [42].

• A Stochastic Gradual Cover Location Problem [20].

• Location of a production firm [23].

• Equity across groups [14].

• Locating a service facility with some unserviced

demand [24].

• The planar k-centrum problem [48].

3.3 Big Cube Small Cube (BCSC)

The Big Cube Small Cube by Schöbel and Scholz [49] is a

generalization of the BSSS based on cubes in k dimensions.

For example, solving a two-facilities problem is formulated

in four dimensions. Every ‘‘Big Cube’’ is split into 2k ‘‘Small

Cubes.’’ For k C4 Schöbel and Scholz [49] suggested, based

on Toth et al. [52], to split a hypercube to two cuboids along

the longest side of the cube so following many splits 2k

smaller cubes of equal size are obtained. However, many of

these small cubes may be eliminated in the process because

a bigger cuboid containing several small cubes is discarded

when its lower bound exceeds the best-known solution.

Convergence of the BCSC algorithm is discussed in

[51]. Their discussion also applies to BSSS which is a

special case of BCSC in two dimensions.

Examples demonstrated in Schöbel and Scholz [49]

include the following:

• The three-dimensional Weber problem with positive

and negative weights.

• The weighted median circle.

• 2-median and 3-median planar problems. (see Daskin

[10] for a discussion of p-median problems). This model

was solved by D.C. optimization (see Sect. 4) by [9].

3.4 Big Segment Small Segment

The method Big Segment Small Segment by Berman, Drezner

and Krass [3] is suitable for facility location problems any-

where on a network. Segments (links or parts of links) replace

squares. The initial set consists of all the links of the network.

Each big segment is split into two small segments.

Examples solved in [3]:

• Weber problem with positive and negative weights [25, 53].

• Obnoxious facility. Disturbance declines by the square

of the distance. Locate the facility on a link such that

total disturbance is minimized. The problem in the

plane is analyzed in [22, 37].

• Competitive facility location on the network [40, 41].

• Minimum covering problem [5].

• Minimum covering problem with two facilities [2].

4 DC optimization for location analysis

DC (difference of two convex functions) optimization [6, 38,

39, 45, 53] is a general efficient approach for constructing

effective lower bounds. Implementing the four optimization

techniques described in Sect. 3 requires effective lower (or

upper) bounds. DC optimization provides effective bounds

for many location problems. Other bounds such as interval

extension [34, 35, 52] or others specific to particular location

problems are also used. For a review see [50].

4.1 A general description of DC optimization

Suppose that an objective function F(X) can be expressed as a

difference between two convex functions: F(X) = G(X)

- H(X). A lower bound LB is generated in a polyhedron such

that LB B F(X) for any X in the polyhedron.

• Select a point X0 in the polyhedron.

• Construct a tangent plane T(X) to G(X) at X0.

• T(X) B G(X) by the convexity of G(X).

• F(X) = G(X) - H(X) C T(X) - H(X) = U(X).

• T(X) is linear and thus concave.

• U(X) is concave and obtains its minimum at one of the

vertices of the polyhedron.

• The minimum value of U(X) at the vertices of the

polyhedron is a lower bound in the polyhedron.

4.1.1 A ‘‘Classic’’ example:

Consider the Weber problem: FðXÞ ¼
Pn

i¼1 widiðXÞwhen the

weights can be positive or negative [25]. This problem is not

convex. The sum is partitioned into two sums: One includes all

positive weights, and one includes all negative weights (with

reverse signs). Since a weighted sum of distances using positive

weights is convex, these two sums are a representation of F(X)

as a difference between two convex functions.

4.2 Application of DC optimization to location

problems

Drezner [21] designed a general algorithm for solving

single facility location problems that have a special
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structure. The algorithm is based on BTST but can be used

as well using BSSS. Consider a minimization of a function

of the type FðXÞ ¼
Pn

i¼1 /iðdiðXÞÞ for functions u(d),

which can be expressed as a difference between two con-

vex functions in d. This condition is not the customary

condition in DC optimization when the assumption is that

u(d(X)) is a difference between convex functions in the

location X. The distance function d(X) is a convex function

in X. However, a convex function of a convex function is

not necessarily convex.

For every demand point there are minimum and maxi-

mum distances to all the points in the triangle (or a square

for applying BSSS) dmin and dmax. Therefore, we just need

to bound u(d) in the range dmin B d B dmax. The tangent

plane is a tangent line in d and not a tangent plane in X.

Suppose that the function u(d) can be expressed as a

difference between two convex functions u1(d) - u2(d). It

is usually not difficult to express a function of one variable

as a difference between two convex functions. For exam-

ple, if the second derivative of u(d) exists for

dmin B d B dmax and is bounded such that q2u/qd2 C

- M, then u(d) = [u(d) ? Md2/2] - Md2/2 is a differ-

ence between two convex functions in d. It is recom-

mended, if possible, to express u(d) as a difference

between two convex functions which have no artificially

large values [8]. Sometimes it is tractable to find the second

derivative of u(d) by d, separate it to a difference between

two positive expressions and double integrate each of these

functions obtaining a difference between two convex

functions. It suffices to double integrate one of the func-

tions, and the second one can be obtained as a difference

between u(d) and that function. For example, consider the

function u(d) = 1/(a ? ed) with a [ 0 which is common

in competitive Huff-like location models [11, 40, 41, 52]

with exponential decay. The second derivative of this

function is e2d�aed

ðaþedÞ3 which clearly indicates that the function

is neither convex nor concave. This expression is a dif-

ference between two positive numbers. Double integration

of the negative term yields u2 dð Þ ¼ 1
2a lnð1 þ ae�dÞ � 0:5

aþed

leading to u1 dð Þ ¼ 1
2a lnð1 þ ae�dÞ þ 0:5

aþed which are two

small-valued convex functions. It can be proven that these

two functions are bounded between 0 and e-d.

We construct a general lower bound in a triangle. The

minimum and maximum possible distance between a

demand point and a facility located anywhere in the tri-

angle (or square for BSSS) is found [21]. See Fig. 3. Note

that by design of the Delaunay triangulation, the demand

point cannot be in the interior of the triangle (it can be one

of its vertices). However, in BSSS the demand point can be

in the interior of the square in which case the minimum

distance is zero. A convex function for d between dmin and

dmax is bounded between the line connecting the end points

dmin and dmax and their value of the objective function and

the tangent line at the middle of the segment. See Fig. 4.

That means that for demand point i we calculate

ai; bi; ci; di which define the relevant line for these

functions:

u1 d Xð Þð Þ� aidi Xð Þ þ bi;u2 d Xð Þð Þ� cidi Xð Þ þ di

Therefore,

F Xð Þ ¼
Xn

i¼1

ui di Xð Þð Þ�
Xn

i¼1

ðai � ciÞdi Xð Þ þ
Xn

i¼1

bi � dið Þ

The second sum is constant. The first sum is the classic

Weber problem with positive and negative weights that can

be expressed as a difference between two convex functions

and bounded from below leading to an effective lower

bound.

It is proved in [21] that if the second derivative of u(d)

by d is bounded, then the difference between the lower

bound and the minimum value of the objective function in

the triangle (error) is approximately proportional to the

square of the side of the triangle. Therefore, when a tri-

angle is split into four triangles, the error in the lower

bound for each of the four smaller triangles is reduced by

about fourfold. Five splits of triangles reduce the error by

about one thousand times.

demand Point demand Point

dmin

dmax

dmin

dmax

Fig. 3 Finding the minimum and maximum distance

dmin dmax

Fig. 4 Bounds on a convex function
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4.3 Solving general ordered median problems

Drezner and Nickel [27, 28] suggested two different

approaches for solving general ordered median problems. In

one approach three lower bounds are suggested [27]. The

Lipschitz lower bound is based on the radius r of the circle

circumscribing the triangle. The minimum value of the

objective function at the three vertices of the triangle is

calculated. The extra possible reduction in the value of the

objective function at up to distance r from the vertex is

bounded. The lower bound based on individual distances is

derived by replacing the vector of distances by the shortest

distances to the triangle for positive ks and the largest dis-

tance for negative ks. A third heuristic lower bound is based

on estimating the Lipschitz constant by evaluating the value

of the objective function on a grid of points in the triangle.

The second approach is based on DC optimization [28].

An important theorem [46]: The order median function is

convex if and only if 0 B k1 B k2 B , …, B kn.

For a given vector k we express it as k = k’ - k’’ such

that both k’ and k’’ satisfy the theorem and thus represent

convex functions. This is done sequentially from left to right

guaranteeing that the first k is nonnegative and that each k is

greater than or equal to the previous one. The objective

function is represented as a difference between two convex

functions. The DC optimization approach is implemented.

The first convex function is replaced by a tangent plane. The

DC lower bound yields a very effective one.

4.4 Examples for ordered median applications

• Minimize the median of distances [28].

• Minimize the truncated mean of distances [28].

• Minimize the range of distances [12].

• Minimize the inter-quartile range [28].

• Minimize the sum of k largest distances [48].

• Maximize the sum of k smallest distances [44].

• Minimize the Gini coefficient of the Lorenz curve [18].

• Minimize absolute deviation of distances [26].

• The expropriation problem [4].

5 Comments on solving multiple facilities problems

Solving multiple facilities to optimality may be done by the

Big Cube Small Cube for a small number of facilities. It

can also be done by nested BTST or BSSS, Big Segment

Small Segment or other methods, but it may not be effi-

cient. Heuristically, it can be done by fixing p - 1 facilities

and optimizing the free facility by BTST or another tech-

nique. Some specific problems can be solved by exploiting

special structures of the particular problem. In some cases a

set of dominating points can be identified, thus reducing

the infinite number of possible solutions to a manageable

number. Using metaheuristic approaches such as tabu search,

simulated annealing, evolutionary methods, variable neigh-

borhood search and others probably remain the best approach

to heuristically solve most multiple facilities problems.
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51. Scholz D, Schöbel A (2010) The theoretical and empirical rate of

convergence for geometric branch-and-bound methods. J Global

Optim 48(3):473–495
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