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Decentralized Routing Algorithm with Physical Time Windows
for Modular Conveyors

Simon Sohrt, Ludger Overmeyer

ABSTRACT

We describe a decentralized routing algorithm
with physical time windows for modular conveying
systems. Existing routing algorithms for modular
conveyors are already capable of bi-directional
conveying while avoiding conflicts such as collisions,
deadlocks, livelocks and starvation effects. In addition
to avoiding conflicts, routing algorithms must also
select routes that minimize the transport time. No
existing algorithm for modular conveyors bases
this decision on the expected physical lead time,
even though physical lead time directly affects the
system throughput. In this publication, we present an
algorithm that uses the physical lead time to select
routes while avoiding conflicts. The avoidance of
conflicts is mathematically proven and the algorithm’s
computational complexity is calculated. We present the
system behavior of an exemplary layout which consists
of nine modular conveying modules that are controlled
by our algorithm.With only nine modules, the package
throughput is on the same level as the package
throughput of conventional sorting systems. Due to its
modular design, additional modules can be added to
further increase the throughput, thus surpassing the
throughput of conventional sorting systems.

KEYWORDS: Modular conveyors · Multi-agent
system · Decentralized control · Conflict-free · Bi-
directional routing

1. INTRODUCTION

Conventional material flow systems excel at achieving
a high package throughput, but lack flexibility. Once
installed in a warehouse, changing their configuration
is expensive and impractical. Due to the increase of
mass-customization and e-commerce, material flow
systems must become more flexible to ensure quick
response times to fast changing demands [1, 2, 3].
Modular conveying systems achieve high throughput

while allowing for fast and flexible configuration
changes. The layout can be changed within minutes
or at most a few hours by adding more modules or
by rearranging existing modules. Consequently,
modular conveying systems can automate use-cases
in warehouses that have been hard to automate with
conventional systems. Automating these use-cases
drives down costs while simultaneously increasing
package throughput.
Furmans et al. [3] identified design patterns of

modular conveying systems. The modules must
have wheels underneath so that they can be quickly
rearranged into a new layout. A decentralized control is
needed to enable the modules to configure themselves
by exchanging messages with their neighboring
modules. No manual configuration of the system is
necessary. In addition to being movable and having
a decentralized control, all conveying systems must
avoid conflicts to ensure the conveying of packages.
The most critical conflicts are:

1. Collisions occur when two packages collide
with each other and interlock.

2. Deadlocks occur when at least two occupied
conveyors are cyclically waiting on each other
to become available [4].

3. Livelocks occur when a package performs the
same cycle of movements over and over again
[5].

4. Starvation occurs when two packages from
different directions compete at an intersection
for right of way. If one direction has high
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Fig.1: Intersection consisting of four
modular conveyors (based on [6])

2. RELATED RESEARCH

In this Section we will first present the state-of-the-
art for large-scaled modules, followed by small-scaled
modules and at last automated guided vehicles.
We divide modular conveying systems into two

classes based on their size in relation to the package
size. If the largest package of a package spectrum is
smaller than a single module, the modules are large-
scaled in relation to the package size. Subsequently,
if even the smallest package of a package spectrum
is larger than a single module, the modules are small-
scaled in relation to the package size. The majority of
packages in a typical warehouse have a width between
100 mm and 600 mm and a length between 200 mm
and 1000 mm [7]. Accordingly, in a typical warehouse,
modules must be at least smaller than 100 mm ×
200 mm to be considered small-scale.
We will only consider algorithms that can potentially

fulfill our requirements, which are: conflict-free, work
for any bi-directional conveyor layout, and select
routes based on the expected travel time. We use a
classification to filter out all algorithms that do not
fulfill our requirements. Different classifications are
available (see [8, 9, 10]), but in this publication, we
use the classification by Seibold [6]. Only algorithms
from Seibold’s class of “Time-window based Route
Reservation” are able to fulfill all our requirements.
Algorithms from this class reserve routes, from
source modules to destination modules, for individual
packages. Every module keeps a schedule, which
are used to reserve time windows for the individual
packages. Even though we will not consider algorithms
from other classes, we still want to mention the
algorithms for modular conveying systems by Gue et
al. [11, 2], by Mayer et al. [4, 12] and by Krühn et al.
[13, 1].

throughput and is always prioritized, the
packages from the other direction will never
get closer to their destination [6].

Conflict-avoidance is handled by routing algorithms.
The need for routing algorithms is depicted in Fig. 1.
In this example, four modular conveyors form an
intersection. The intersection is surrounded by source
and destination modules through which packages may
enter and leave. In this example, the conveying of
packages I, II, and III has already begun, while package
IV just entered the system. The shortest path for every
package is depicted by arrows. If package IV enters
the intersection immediately and follows the shortest
path, a conflict occurs (either a collision or a deadlock).
Several routing algorithms have been developed that
prevent conflicts as described in Section 2.
In addition to avoiding conflicts, routing algorithms

must also select routes that positively affect the
throughput. Existing routing algorithms have used
different methods of selecting routes, but no algorithm
has selected routes based on the expected travel time.
In this paper, we propose a novel routing algorithm
that selects routes based on the expected travel time by
utilizing physical time windows. Since the throughput
is a result of the travel time, the throughput is optimized
by basing the selection of routes on the expected travel
times.
Our proposed routing algorithm is designed

for decentralized controlled modular conveyors.
Every conveyor has a schedule and a clock which is
synchronized through the network. The synchronized
clocks are necessary to reserve physical time windows
on the schedules. The conveyors reserve routes by
exchanging messages: When a conveyor receives a
request, it checks its schedule. If the request can be
accepted, it sends a request to the next conveyor. If the
request cannot be accepted, a new time is proposed to
the requesting conveyor.
This paper is organized as follows. In Section 2, we

present state-of-the-art routing algorithms for modular
conveying systems and for automated guided vehicles
(AGV). The modular conveyors are devided into large-
scaled and small-scaled modules. We chose to include
AGV routing algorithms because they can be modified
to work in modular conveyors. Before describing
the routing algorithm, we present our preliminary
considerations regarding the synchronization of
the conveyors’ clocks in Section 3. In Section 4, we
describe our algorithm for large-scaled modules. Based
on the algorithm for large-scaled modules, we present a
modified algorithm for small-scaled modules in Section
5. The characteristics of both algorithms are analyzed in
Section 6. We give an application example in Section 7.
The system behavior of a conveying system controlled
by our algorithm is presented in Section 8. Finally, we
present our conclusion and outlook in Section 9.
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Fig.3: The netkoPs system is made up of several
small-scaled conveying modules (based on [18])

2.2. Small-Scaled Modules
An example depicting a conveying system that is made
up of small-scaled modules is shown in Fig. 3 – the
netkoPs system. The prototypes of the netkoPs modules
are described in greater detail in [18, 19, 20]. The
netkoPs modules are based on the cogniLog modules
that have been described in [1, 13, 7]. We have chosen
the netkoPs modules as our example system because it
is well documented by scientific publications.
Every netkoPs module has a sensor to detect

packages, can convey in any direction, and has its own
dedicated control. The footprint of a module is 60 mm
× 60 mm. These modules can only communicate with
their four direct neighbors and can be freely arranged
into the slots of a matrix mounting. Prototypes of
matrix mountings with different dimensions have
been manufactured, and slots can be left unoccupied.
Every matrix mounting has wheels underneath and
can be freely positioned within a warehouse. Other
examples of small-scaled conveyor systems include
the Celluveyor from Uriarte et al. [21, 22, 23] and the
“Magic Carpet System” presented by Itoh Denki Ltd.
[24].
None of the published control algorithms for small-

scaled modules belong to the class of “Time-windows
based Route Reservation”, and therefore, are not
presented. An important contribution was made
by Krühn by introducing the concept of “module
neighborhoods” for controlling small-scaled modules
[13, 1]. By utilizing the “module neighborhoods”
concept Krühn was able to modify an control algorithm
originally designed for large-scaled modules to work
on small-scaled modules.

2.3. Automated Guided Vehicles
Both the hardware and the algorithms for automated
guided vehicles (AGV) are much more advanced than
their modular counterparts. The following overview
publications describe state-of-the-art AGV routing
algorithms: [9, 10, 25, 8]. Aswith themodular conveying

Fig. 2: The GridSorter system is made up of several
large-scaled conveying modules [6]

2.1. Large-Scaled Modules
An example for a conveying system that is made up of
large-scaledmodules is shown in Fig. 2 – the GridSorter
system. The prototypes of the GridSorter modules have
been described in [4] and [6] and are nowmanufactured
by flexlog GmbH [14]. The footprint of a GridSorter
module is 500 mm × 500 mm allowing packages to
be conveyed into all four cardinal directions. Every
module has four sensors at the sides to detect incoming
packages and a dedicated control. Communication
is only possible with its four direct neighbors. All
modules have wheels underneath and four standardized
connections on every side, which are used to transmit
information and power from one module to another.
Due to the wheels and the standardized connections,
the modules can be rearranged into a new layout within
minutes. If multiple modules are combined to form a
layout, no single control has an overview of the whole
system. Instead, the modules exchange messages
and decide the conveying of packages on their own.
Thus, the modules are software-agents as defined by
Franklin and Graesser [15] with decentralized and
distributed controls. Large-scaled modules have also
been manufactured by other companies. Two example
systems are the XPlanar system [16] and the Motion
Cube system [17], but no control algorithms have been
published for these systems.
Seibold described a routing algorithm [6] that

belongs to the class of “Time-window-based Route
Reservation”. This algorithm is conflict-free and works
for any bi-directional layout, selecting routes based
on the expected logical lead time. One downside of
utilizing logical time is that it does not progress unless
a package is conveyed from one module to the next.
The route with the shortest logical lead time is not
necessarily the route with the shortest physical lead
time.
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Is it possible to create a decentralized routing
algorithm that selects routes based on the physical
lead time in any bidirectional layout while avoiding
conflicts? We will tackle this question by utilizing
physical time windows.

3 PRELIMINARY CONSIDERATION:
CLOCK SYNCHRONIZATION

Since we want to reserve routes with physical time
windows, we must first make sure that the clocks of all
conveyors are synchronized. The clocks must not be
synchronized perfectly, but the timing differences of
neighboring conveyors must be small enough that the
conveying process is not affected in a meaningful way.
The synchronization of clocks is a well-researched

field [31], and many cheap technical solutions exist. We
would like to point out the Precision Time Protocol
(PTP), which was defined in the IEEE 1588-2008
standard [32]. PTP was designed for local systems
requiring high accuracy that cannot bear the cost of a
GPS receiver at each node, or for which GPS signals
are inaccessible [33]. It can be used within a standard
ethernet-network and is therefore cost-effective. The
accuracy of PTP time signals is in the sub-microsecond
range which is sufficient accurate for the conveying of
packages which rarely exceeds 10 m/s.

systems, we will only focus on algorithms from the
class of “Time-window-based Route Reservation.”
Most algorithms from this class are based on the
algorithm described by Kim and Tanchoco [26]. This
algorithm is conflict-free, works for any bi-directional
layout, and selects routes based on the physical travel
time. Unfortunately, all routes are sequentially planned
by a central control that has a complete overview of the
system. After a route has been planned, it is uploaded
to the respective AGV. Kim and Tanchoco even
explicitly stated that the algorithm cannot be used in a
decentralized controlled system: “Parallel execution of
the routeing algorithm may result in conflicting travel
schedules or gridlocks in a bidirectional network.” [26]
We want to highlight two publications regarding

Kim and Tanchoco’s algorithm. The original algorithm
neglected the problem of unexpected delays that can
occur in real-world systems, during transport execution.
Maza and Castagna [27] presented a modification that
prevents conflicts even when the previously reserved
time windows are missed. This is accomplished by
monitoring intersections: If a package misses its time
window on the intersection, no other AGV must enter
the intersection until the delayed AGV has passed the
intersection.
Möhring et al. [28] tested the practicality of the

algorithm for real-world use-cases. Their algorithm is
implemented to route vehicles at a Container Terminal
in the Hamburg Harbor. Beforehand, they simulated
different scenarios with up to 48 vehicles on a computer
with an AMD-Athlon 2100+ (1,7 GHz) processor and
512 MB RAM. Even for worst-case scenarios (new
routes must be calculated for all vehicles at the same
time), the computation took less than half a second.
We believe that these fast computation times are the
reason why Kim and Tanchoco’s algorithm was never
modified extensively. It is already efficient enough for
real-world use-cases even in its basic form.
Before we conclude the related research section,

we want to mention the KARIS vehicles [29, 30]. The
vehicles cannot only individually transport single
items, but are also able to form two different functional
clusters. As a discontinuous cluster, KARIS vehicles
connect to each other to transport items that are larger
than a single module. As a continuous cluster, several
KARIS vehicles form a conveyor line to realize high
throughput of goods. To our knowledge, no detailed
routing algorithms for KARIS vehicles have been
published.
To summarize, we identified two algorithms that

are conflict-free and work in any bi-directional
layout – Seibold’s algorithm and Kim and Tanchoco’s
algorithm. Seibold’s algorithm is decentralized, but
routes are selected by using logical lead time and not
physical lead time. Kim and Tanchoco’s algorithm, and
its modifications, use physical lead time to select routes
but are designed for a centrally controlled system.
As a result of our literature review, we identified the
following research question:

Algorithm 1: ProcessMessages
Input: Received messages
Result: Sent messages, modified schedule

1 delete routing entries with expired TTL;

2 if source module then
3 StartNewRoute;

4 foreach unprocessed OBSOLETE message do
5 delete affected entry from schedule;
6 send OBSOLETE to succeeding module;

7 foreach unprocessed DENIAL message do
8 modify affected entry according to DENIAL;
9 delete affected entry from schedule;

10 InsertIntoSchedule(modified entry);

11 foreach unprocessed REQUEST message do
12 create new entry according to REQUEST;
13 InsertIntoSchedule(new entry);

14 foreach unprocessed CONFIRMATION message do
15 mark the affected entry as confirmed;
16 if CONFIRMATION reaches source module then
17 if iteration counter > maximum iteration then
18 send RESERVE-UNLOCK with local package

ID;

19 set iteration counter to 0;
20 else
21 send CONFIRMATION to preceding module;
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The presented algorithm ignores the effects of
acceleration, deceleration, and slippage that occur in
real-world conveying systems. All three effects can
be accounted for by adding a safety allowance to the
time windows. In the following paragraphs, we will not
explicitly mention this safety allowance for the sake of
simplicity.
Before route reservations can be created, the modules

must be initialized. During this initialization, every
module generates a routing table by communicating
with its direct neighbors. Hereupon, this information is
propagated through the system. This process is similar
to creating metric tables in computer networks using
the distance-vector routing protocol [34]. For every
destination, the modules determine the ID of the
neighboring module that is closest to this destination,
the distance to the destination, and the number of
intersections between the source module and the
destination.
Routing entries store the following data: unique

request ID, physical time window (arrival time and
departure time), priority, time-to-live (TTL), ID of the
preceding module, ID of the succeeding module, and
state (the two states are “requested” and “confirmed”).
The unique request ID, the priority and the TTL are set
by the source module at the creation of the request and
are not altered by the other modules along the route.
Modern warehouses have already assigned a unique

ID to every package, which the source modules re-
use. If an external process does not set a priority,
the source module generates a priority instead. This
generated priority is based on the timestamp at which
the package was first introduced to the source module.
Routing entries with earlier timestamps have a higher
priority than entries with later timestamps. Basing the
priority on the introductory time has the advantage
that starvation effects are avoided. We describe the
avoidance of starvation effects in more detail in Section
4.2.
The TTL is the maximum time a routing request

may “live” before it is discarded and a new request
is created by the source. Consequently, every module
periodically checks the TTL for routing entries and
deletes expired ones. The introduction of TTL was
necessary to take into account the uncertainty of a
decentralized controlled system with physical time
windows. Since no module has a complete overview
of the system, the source module can only estimate
how long the route reservation process takes. We will
present how the TTL is estimated in Section 4.3, after
we overview the algorithm.
Modules can send the following six message

types which must be processed in the following
sequence: OBSOLETE, DENIAL, REQUEST,
CONFIRMATION, RESERVE-LOCK, RESERVE-
UNLOCK. The processing ofmessages in this sequence
positively affects the throughput. Both OBSOLETE
and DENIAL messages delete routing entries on the
schedule. By processing them first, the schedule opens

4 ALGORITHM FOR LARGE-SCALED
MODULES

As previously mentioned in Section 3, we assume
that the clocks of every module are sufficiently
synchronized. The main algorithm is described in
pseudocode in Alg. 1, and its two subroutines are
described in Alg. 2 and Alg. 3. For further clarification
an application example is given in Section 7.

4.1 Overview of the Algorithm
A short overview of the algorithm: Themodules reserve
a route from source to destination by exchanging
messages. Every module along a route stores a routing
entry on its schedule. Routing entries include an arrival
and a departure time. Every route reservation has two
phases: the request phase and the confirmation phase.
In the request phase the route is planned from source
to destination. During this phase, the modules have
to select a path, and they have to negotiate the arrival
and the departure times. After the request has reached
the destination module, the route is confirmed from
destination to source.

Algorithm 2: StartNewRoute
Input: Received messages
Result: Sent messages, modified schedule

1 foreach unprocessed RESERVE-LOCK do
2 add to list of received locks;

3 foreach unprocessed RESERVE-UNLOCK do
4 remove from list of received locks;

5 if local package without routing entry then
6 if priority of local package higher than priority of

received locks then
7 if iteration counter > maximum iteration then
8 send RESERVE-LOCK with package ID and

priority;

9 create routing entry for local package;
10 calculate TTL for newly created routing entry;
11 InsertIntoSchedule(newly created entry);

Algorithm 3: InsertIntoSchedule
Input: Routing entry
Result: Sent messages, modified schedule

1 filter out all requested entries with a lower priority;
2 insert routing entry into filtered schedule;

3 if insertion successful then
4 if REQUEST reached destination then
5 send CONFIRMATION to predecessor;
6 else
7 send REQUEST to neighbor with shortest lead time;

8 foreach overwritten entry do
9 send DENIAL to the preceding module;

10 send OBSOLETE to the succeeding module;

11 else
12 send DENIAL to preceding module;
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occur and therefore the throughput will be not affected
at all in most conveying systems. In Section 8 we
analyze the system behavior of a simulated conveying
system controlled by our algorithm. No RESERVE-
LOCK message was sent.
If the source module is not locked, it estimates the

TTL and the desired arrival time, and subsequently,
sends a REQUEST message to the neighboring
module with the shortest lead time. Every REQUEST
message includes a unique request ID, the priority, the
destination ID, the desired arrival time, and the TTL.
This desired arrival time of theREQUESTmust be far

enough into the future that the route reservation process
is most likely completed by then. The completion time
depends on the number of modules between the source
and the destination and the number of overlaps that
will likely occur, which need to be resolved. Since the
source has no complete system overview, it can only
estimate the number of overlaps. Because the number
of overlaps can only be estimated, the arrival time can
only be estimated.
If more overlaps occur than estimated, the

CONFIRMATION message will reach the source
after the estimated arrival time and it would become
physically impossible for the package to arrive at the
estimated arrival time. Because the first time window
is missed, all subsequent time windows may also be
missed. A mismatch would have occurred between
the projected movement of the package and the actual
movement. As already mentioned in Section 2.3
Maza and Castagna [27] have proven that even when
a mismatch occurs, conflicts can still be avoided by
following the sequence of the previously negotiated
time windows.
Even though no conflict occurs due to the mismatch,

it is still advantageous to avoid such a mismatch
because the selection of routes depends on accurate
schedules. The selection of routes is based on the lead
time, which itself, is based on the projected movement.
If the mismatch becomes too big, sub-optimal routes
might be chosen.
To avoid a mismatch between projected movement

and actual movement, we introduce the concept of TTL.
Before a source sends the first REQUEST message,
it estimates how long the route reservation will most
likely take. A safety margin is added to increase the
chance of completing the route reservation within the
TTL. If the TTL is estimated too conservatively and the
route reservation is confirmed faster than estimated,
the package can not start earlier, as this would also
cause a mismatch between projected movement and
actual movement. Therefore, the package has to
wait and the throughput is negatively affected. If the
estimate is too optimistic and the route reservation is
not confirmed within the TTL, the source module has
to start a new iteration attempt. Since the package has
to wait until this new iteration attempt is completed,
the throughput is once again negatively affected. In

up. Then, the REQUEST and CONFIRMATION
messages are processed, which either create or
change the state of routing entries. By processing the
REQUEST and CONFIRMATION messages last,
previously unavailable time windows can be reserved
and the chance of reserving a well-fitting time window
is increased, positively affecting the throughput. The
LOCK-RESERVE and the UNLOCK-RESERVE
messages are only sent and processed by the source
modules. Their meaning will be explained when
describing the initial creation of a REQUEST message
at a source module in the next Section.

4.2 Initial Creation of a REQUEST Message at
a Source

When a package enters the conveying system on a
source module, the schedule of this source module
becomes blocked indefinitely until the route reservation
is confirmed. Due to the decentralized nature of the
system, the source modules are not synchronized.
Caused by this lack of synchronization, it is possible,
yet very unlikely, that a source module may never
finish a route reservation and starves. An example: The
module mn sends a REQUEST to its optimal neighbor
mn+1. Sincemn+1 has already a confirmed routing entry
at the requested time, a DENIAL is sent back to mn.
mnmust now alter the timewindowof the corresponding
entry. This altered time window now overlaps with a
confirmed routing entry. Consequently,mnmust send a
DENIAL back to its precedingmodulemn−1. This chain
of events may repeat itself, until the TTL expires. Since
there is no mechanism for avoiding the same chain of
events in the next iteration attempt, the source module
starves. To prevent this starvation, a synchronization
lock is introduced: Every source module keeps track
of the number of failed reservation attempts. If a
user-specified maximum number of iteration attempts
is exceeded, the source module sends a RESERVE-
LOCK to all other source modules. This RESERVE-
LOCK includes the package ID and the priority of the
package. All source modules keep a list of the received
RESERVE-LOCKS. Source modules only start new
route reservations, if the local package has a higher
priority than all of their received RESERVE-LOCKS.
The algorithm for starting a new route is shown in
Alg. 2.
When a matching CONFIRMATION message

reaches a source module, the iteration counter for
the number of failed attempts is reset back to 0. If
the source module has previously sent a RESERVE-
LOCK, a RESERVE-UNLOCK is sent.
Due to the introduction of synchronization locks, the

conveying system may temporally become centrally
controlled, because every source module may have to
wait on a single source module to finish its reservation
process. Since every source module has to wait, the
throughput of the conveying system is negatively
affected. However, the circumstances under which
a synchronization lock are used are very unlikely to



7Decentralized Routing Algorithm with Physical Time Windows for Modular Conveyors

4.4 Selecting a route
Routes are selected based on the physical lead time.
The physical lead time is the sum of the base lead
time and temporary increases caused by previously
received DENIAL messages. The base lead time for
every neighboring module is computed by dividing the
destination’s distance (which was determined during
the initialization phase) by the uniform conveying
speed of the modules. Every DENIAL message
includes a proposed time, when the sending module is
ready to accept a package. This proposed time causes
a temporary increase of the lead time. Modules always
send REQUESTS to the neighboring module with the
lowest lead time. Due to temporary lead time increases,
the REQUESTS are not necessarily sent along the
shortest path. Livelocks are avoided by never choosing
the preceding module, even if it has the lowest lead
time.

4.5 Processing Messages
When a module receives a REQUEST message, it
creates a routing entry with the requested arrival
time. Next, all previously created requests with a
lower priority are filtered out from the schedule. The
module then attempts to add the newly created entry
to the filtered schedule without creating overlaps.
Testing for overlaps is done by using the algorithm
described in [35]. If the newly created entry cannot be
inserted into the schedule, a DENIAL is sent back to
the preceding module that includes the next available
arrival time. If the newly created entry is successfully
inserted into the schedule and reached its destination,
a CONFIRMATION is sent back to the preceding
module. If the newly created entry is successfully
inserted, but did not reach its destination, a REQUEST
is sent to the neighboring module with the shortest
lead time. Livelocks are prevented by excluding the
possibility of sending a REQUEST message to the
predecessor.
For every entry that has been overwritten by the

newly created routing entry, a DENIALmessage is sent
to its preceding module and an OBSOLETE message
is sent to its succeeding module. The algorithm for
inserting into the schedule is shown in Alg. 3.
When a module receives a CONFIRMATION

message, it changes the state of the corresponding
routing entry to the state confirmed and sends a
CONFIRMATION message to its preceding module.
When a CONFIRMATIONmessage reaches the source
module, the actual conveying of the package can start.
The source module also sends a RESERVE-UNLOCK,
if it has previously sent a RESERVE-LOCK. The
iteration counter for the number that tracks the number
of failed attempts is reset back to 0.
A DENIAL message includes the unique request

ID and the proposed time. When a DENIAL message
is received, the receiving module first deletes the
corresponding entry from its schedule. A new entry is
created with a modified departure time. This modified

the next paragraphs, we present our approaches for
estimating the TTL.

4.3 Estimating the TTL
Wedeveloped twomethods for estimating the TTL. The
first method bases the estimate mainly on the average
time previous route reservations took before they were
confirmed and is depicted in Eq. 1. Consequently, every
source must store the average time of all previously
confirmed route reservations for every destination. The
average time of previous route reservations is the first
term in the equation and is written as t̄dest. Since route
reservations which were not confirmed within the TTL,
increase the value of t̄dest, this estimation method is
self-correcting.
The second term nsafe · i takes into account that the

number of packages within the system can randomly
peak. This package peak increases the chance of routes
conflicting with each other. Due to conflicting routes,
route reservations take longer than average, since
conflict avoidance requires the sending of additional
messages. To avoid a source from starving, every
source increases an iteration counter i by 1 for every
failed attempt. This iteration counter starts at 1 for
every newly started request and is reset back to 1 once
the reservation has been successfully completed. i
is then multiplied with the safety factor nsafe. While
testing on different layouts, we achieved satisfactory
throughputs by picking a value in the range from 1
to 2 for nsafe. In Section 8.2 we present the resulting
conveying times for nsafe = 1 for an exemplary layout.
The formula in its entirety is as follows:

(1)

If the layout of the conveying system changes, all
previously calculated averages become invalid. Since
packages still need to be conveyed during this start-
up phase, a second method for estimating the TTL is
needed:

(2)

where ndest is the number of modules between source
and destination and tcom is the time for one module
to receive and process a message from a neighboring
module. The factor 2 is needed because all modules
along a route have to receive and process at least two
messages – the REQUEST message and subsequently
the CONFIRMATION message. i is once again the
iteration counter that starts at 1 and is increased by
1 until the route reservation has been successfully
confirmed. After completing the route reservation, i
is resetted. The system switches from TTLs to TTLm as
soon as t̄dest can be computed.

T T Lm(tdest , i) = tdest +nsa f e · i

T T Ls(ndest , i) = 2 · tcom ·ndest · i
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After receiving the SCHEDULE-ACKNOWLEDGE
message, the master module sends a REQUEST to the
optimal neighbor. A successful insertion is depicted in
Fig. 4 for a package that has the dimensions of 3 × 3
modules. The reserved neighborhoods are shown for
t = 10 ms and t = 11 ms.
When a routing entry is deleted on a slave module by

a REQUEST with a higher priority, the slave modules
informs the master module by sending a SCHEDULE
message. The master module then sends a DENIAL
message to all other slave modules in the neighborhood
and an OBSOLETE message to its succeeding master
module and a DENIAL message to its preceding
module.

Fig.4: Neighborhoods during route reservation
(based on [13])

Fig.5: Deadlock situations that must not occur [6]

6 CHARACTERISTICS OF THE
ALGORITHMS

In this Section we prove the absence of conflicts
and calculate the computational complexity of the
algorithms.

6.1 Proof of Conflict Absence
Conflicts include collisions, livelocks, starvation
effects and deadlocks. We avoid livelocks by omitting
the requesting module, when searching for a new
optimal module. Starvation at sources is avoided by
using REVERSE-LOCK messages. In the following
paragraphs, we will prove the absence of collisions and
deadlocks.

entry is then added to the schedule using the algorithm
described in Alg. 3.

5 MODIFIED ALGORITHM FOR SMALL-
SCALED MODULES

The algorithm is modified for small-scaled modules
by introducing the concept of module neighborhoods
described by Krühn in [13]. Every message must be
extended to include the package dimensions, which
is used to determine the size of the neighborhood.
Neighborhoods are made up of one master module
and several slave modules. Routing entries must be
extended by including the ID of the module which
created the entry (the module itself or a remote master
module). Furthermore, three more messages must be
introduced: SCHEDULE-REQUEST, SCHEDULE,
and SCHEDULE-ACKNOWLEDGE. To keep this
paper concise, we will only demonstrate the usage of
these three new messages when a master module must
process a REQUEST message.
If a small-scaled module receives a REQUEST

message from a preceding master module, it becomes
the master module for a new neighborhood. The
master module now sends a SCHEDULE-REQUEST
message to all slave modules. The SCHEDULE-
REQUEST message consists of the ID of the master
module, the priority of the REQUEST message, and
the package ID. All modules keep a list of all received
SCHEDULE-REQUEST messages. The modules
always process the SCHEDULE-REQUEST message
with the highest priority first. Processing is done by
sending their own schedule to the master module via a
SCHEDULE message.
After receiving the schedules of all modules within

the neighborhood, the master module attempts to insert
the newly created routing entry into all schedules. If
the insertion fails on only one schedule, the master
module sends the unmodified schedules back to the
slave modules via SCHEDULE messages and sends
a DENIAL message to the preceding master module.
If the insertion is successful, the master module sends
back the modified schedules to all slave modules.
When the slave modules receive the modified schedule
they first check, if their schedules have been altered in
the meantime by either themselves or another master
module. If this is the case, they re-send their schedule
via a SCHEDULE message to the master module. The
master module must now try once again to insert the
newly created routing entry into all schedules. If the
schedules have not been changed, the slave modules
send back a SCHEDULE-ACKNOWLEDGE message
to the master module, indicating that they have
accepted the modification of their schedule. After the
SCHEDULE-ACKNOWLEDGE message has been
sent, the corresponding SCHEDULE-REQUEST
message is removed from the SCHEDULE-REQUEST
list of the slave module.
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from a module outside the loop. The module within the
loop can be in two different states:
1. The entry of the receiving module is in the

state confirmed: The receiving module rejects the
REQUEST and sends back a DENIAL with a new
proposed time and no deadlock occurs.
2. The entry of the receiving module is in the

state requested: The module that receives the request
compares the priorities of the REQUESTmessage with
the priority of the routing entry, deleting those with
lower priority and no deadlock occurs.

6.2 Computational Complexity
We first determine the computational complexity of the
algorithm for large-scaled modules before moving on to
the modified algorithm for small-scaled modules. The
computational complexity of the algorithm for large-
scaled modules depends on the maximum number of
messages a module receives. The processing time of
OBSOLETE, CONFIRMATION, RESERVE-LOCK,
and RESERVE-UNLOCK messages is constant. On
the contrary to this, the processing time for REQUEST
or DENIAL messages is not constant, since the
modules have to check for overlaps when inserting
a newly created routing entry into their schedules. A
single module can at most have as many routing entries
as there are packages in the system, because we do not
allow backtracking and consequently no package can
havemore than one corresponding routing for a package.
In the worst-case, a module has to check for overlaps
with every routing entry on its schedule. Therefore,
the computational complexity for large-scaled modules
becomes O(mo +mrd · p), where mo is the number of
received OBSOLETE, CONFIRMATION, REVERSE-
LOCK, and REVERSE-UNLOCK messages, mrd
is the number of received REQUEST and DENIAL
messages, and p is the number of packages in the
system.
The computational complexity for small-scaled

modules is higher, since additional messages need to
be sent and processed to coordinate all modules within
the neighborhood. The processing of the SCHEDULE-
REQUEST, SCHEDULE, and SCHEDULE-
ACKNOWLEDGEmessages is constant. Processing of
OBSOLETE, CONFIRMATION, RESERVE-LOCK,
and RESERVE-UNLOCK messages is no longer
constant, since the master module needs to forward
these messages to all modules within the neighborhood.
In order to process REQUEST and DENIALmessages,
the master module must both check its own schedule
and the schedules of all slave modules. Therefore, the
computational complexity for small-scaled modules
is O(ms + n · (mo +mrd · p)), where ms is the number
of received SCHEDULE-REQUEST, SCHEDULE,
and SCHEDULE-ACKNOWLEDGE messages by
other master modules, n is the number of modules
within the neighborhood, mo is the number of received
OBSOLETE, CONFIRMATION, RESERVEE-LOCK,
andRESERVE-UNLOCKmessages,mrd is the number

Seibold identified two possible deadlock situations
that can occur in large-scaled modular conveying
systems [6]: deadlocks caused by opposing routes and
deadlocks caused by packages waiting in a loop (see
Fig. 5). In both cases, the packages are deadlocked
because the time window on the succeeding module
overlaps with the time window of another package.
Accordingly, deadlocks and collisions are avoided
by guaranteeing that no time windows overlap. Since
the arrival and departure times of packages on every
module are solely determined by either accepting or
denying REQUEST messages, we must only examine
this phase. The following proof works for both small-
scaled and large-scaled modules. In the case of large-
scaled modules, only the schedule of the neighboring
module must be checked for overlaps. In the case of
small-scaled modules, an additional step is needed:
When a module receives a REQUEST message, it
must check the schedules of all modules within the
neighborhood before either a REQUEST or a DENIAL
can be sent (see Section 5). To keep this publication
concise, we omit this additional step in the following
paragraphs. We first prove the absence of overlapping
time windows for the case of opposing routes by proof
of exhaustion. The following cases can occur:
1. Both entries are in the state requested: Both

modules send REQUEST messages to the other
module. The requested time window will overlap on
both modules with the already existing routing entries.
Therefore, both modules will compare the priority of
the entry with the priority of the REQUEST message
and delete the one with the lower priority. As a result,
both modules will end up with only the entry for the
package with the higher priority and no deadlock
occurs.
2. One entry is in the state confirmed, the other

is in the state requested: Only the module with the
requested entry sends a message. The module with
the already confirmed entry receives the REQUEST,
but immediately sends back a DENIAL, because
already confirmed requests must not be deleted by a
REQUEST message (even if it has a higher priority)
and no deadlock occurs.
3. Both entries are in the state confirmed: This

case cannot occur and therefore no deadlock occurs.
Prior to having confirmed entries, every entry has to
be in the requested state. If both neighboring modules
were in the state requested at the same time, the rules
for case 1 avoid the creation of two opposing entries
with the state confirmed. If one of the entries was
in the state confirmed and the other was in the state
requested, the rules from case 2 avoid the creation of
two opposing entries with the state confirmed.
In contrast to deadlocks caused by opposing routes,

deadlocks in loops are caused by non-opposing routes.
Once again, we will prove the absence of overlapping
time windows by proof of exhaustion. In the following,
we examine a module in a loop that receives a request
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entries in the state confirmed are displayed with two
arrows on the conveyor. Routing entries are assigned to
their packages in two ways: The first arrow originates
at their respective package, and the arrows have the
same color as the packages.
The schedules of all modules are depicted on the

right side: The horizontal axis displays the time, while
the schedules of the individual modules are arranged
on the vertical axis. The states of the time windows
are denoted by one of three possible letters: f meaning
the time window is not assigned to any routing entry, r
meaning the time window is assigned to a routing entry
that is in the state requested and c meaning the time
windows is assigned to a routing entry that is in the
state confirmed. Every time window has two indexes:
The lower index is used to denote the module ID, and
the upper index is used to number the time windows.
In this application example, receiving and processing

a message from a neighboring module takes 1 ms.
Conveying a package from the center of a module to
a neighboring module takes a minimum of 10 ms. We

of received REQUEST and DENIAL messages, and p
is the number of packages in the system.

7 APPLICATION EXAMPLE

In the Fig. 6 to 10, the system behavior is shown for
large-scaled modules. In every figure, the layout is
shown on the top, and the schedules of the modules
are shown on the bottom. No module has this complete
overview of the system – every module can only access
its own schedule.
The layout consists of five modules. The unique

identification number (ID) of every module is in their
top left corner. Two source modules exist in this layout:
source A has the ID 2 and is at the left-most of the
layout, and source B has the ID 5 and is at the bottom-
most of the layout. There is only one destinationmodule
in the layout: It has the ID 1 and is at the top-most of the
layout. Routing entries that are in the state requested
are displayed as a single arrow on a conveyor. Routing

Fig.6: Application example at t= 10 ms Fig.7: Application example at t= 11 ms
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II overlap, the module compares the priorities of the
packages, and sub sequently, deletes the routing entry
for package I because its priority is lower than the
priority of package II. Module 4 then creates a new
routing entry for package II and sends the following
three messages. Firstly, an OBSOLETEmessage is sent
to module 1 to inform it that the already confirmed
routing entry for package I must be deleted. Secondly,
a DENIAL message is sent to module 3 with a new
proposed arrival time for package I. Finally, a new
REQUEST message for package II is sent to module 1.
After module 4 has finished processing the REQUEST
message, it processes the CONFIRMATION message.
Since the routing entry the CONFIRMATION
message is referring to has been deleted, the message
is discarded.
At t = 12 ms, module 1 receives two messages from

module 4: the OBSOLETE message for package I and
the REQUEST message for package II. The reception
of the OBSOLETE message causes the deletion of
the previously confirmed time window for package I.

have chosen this unrealistically high conveying speed
in this example for the following reason: Since the
conveying speed and the communication speed are
now within the same magnitude, it becomes possible
to display both in the same figures.
At t = 10 ms, package I has entered the system

through module 2 (source A), and its request has
reached module 1 (destination A), which sends back a
CONFIRMATION message to module 4. At the same
time, package II enters the system through module 5
(source B). Module 5 sends a REQUEST message for
package II to module 4. Package II has a higher priority
than package I.
At t = 11 ms, module 4 receives both the

CONFIRMATIONmessage for package I frommodule
1 and the REQUEST message for package II from
module 5. As stated in Section 4, REQUEST messages
are always processed before CONFIRMATION
messages. Therefore module 4 processes the
REQUEST message for package II first: Since the
requested arrival times for package I and package

Fig.8: Application example at t= 12 ms Fig.9: Application example at t= 13 ms
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confirmed, and module 4 sends a CONFIRMATION
message to module 5.
At t = 14ms, module 1 receives a REQUESTmessage

for packageI from module 4: It checks its schedule and
creates a routing entry for package I. This routing
entry is in the state confirmed, because the request has
reached its destination. Subsequently, module 1 sends
a CONFIRMATION message for package I back to
module 4. At the same time, module 5 receives the
CONFIRMATION message for package II. Module 5
alters the state of the corresponding routing entry to
confirmed and the reservation process for package II
has successfully ended. The schedule of module 5 is no
longer blocked indefinitely by package II.
To show the effects of a sub-optimal calculation of

the TTL, the TTL is calculated conservatively in this
example. Every source module calculates the TTL by
adding 10 ms to the creation time of a request. Because
of this sub-optimal TTL calculation, package II has
to wait for 6 more ms after the CONFIRMATION
message has reached source module 2 before the
conveying can start.

8 SYSTEM BEHAVIOR

In this Section we present our simulation that we
have used to both validate the routing algorithm and
measure its performance. We will first show the set-up
of our simulation, followed by an analysis of the system
behavior of a typical layout.

8.1 Simulation Set-Up
Our simulation is built on top of theMASON simulation
library core version 17 [36]. Since our simulation set-up
is similar to the simulation set-up described in [6], we
will only present the most important simplifications.
The first simplifications are that the clocks of the
conveyors are perfectly synchronized at all times and
that no hardware or communication malfunctions
occur. Just like their real-life counterparts, the
simulated modules can only communicate with their
four neighboring modules.
The simulated modules have the same base area as

the GridSorter modules – 500 mm × 500 mm. The
simulated packages have a base area of 480 mm ×
480 mm and consequently one module can carry at
most one package. Inertia effects and slippage are not
modeled. Every source module has a packages queue.
During the simulation, packages are added to this
queue faster than they are removed. The destinations of
the packages are randomly chosen. As soon as a source
module becomes unoccupied, the longest waiting
package from the queue is placed on the source. Source
modules only start the reservation process, when the
package is placed on them. Destination modules
remove packages as soon as the package center arrives
at the center of the destination module.

Caused by the reception of the REQUEST message for
package II, module 1 creates a routing entry for package
II. This routing entry is in the state confirmed because
the request has reached its destination. Subsequently,
module 1 sends a CONFIRMATION message back
to module 4. At the same time, module 3 receives the
DENIALmessage frommodule 4 and extends the time
window for the routing entry for package I. Module 3
sends a new REQUESTmessage with an altered arrival
time for package I to module 4.
At t= 13 ms, module 4 receives two messages: the

CONFIRMATIONmessage frommodule 1 for package
II and a new REQUEST message from module 3 for
package I. Since the requested arrival time for package
I does not overlap with the time window of package II,
a routing entry for package I is created on module 4.
Subsequently, module 4 sends a REQUEST message
for package I to module 1. Next, the CONFIRMATON
message from module 1 is processed: The state for
the routing entry on module 4 for package II is set to

Fig. 10: Application example at t= 14 ms
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is 6.7. Conventional sorting and distributions systems
have a throughput between 5000 and 10000 packages
per hour according to [38]. A modular conveying
systemwith only 9modules controlled by our algorithm
already performs as good as a conventional system.
Due to its design, additional modules can be added to
further increase the throughput and the throughput of
conventional systems is surpassed.
We measured the mean transport time and its SE

for every combination of source and destination. The
transport time is the sum of the route reservation time
and the conveying time. The results are depicted in
Table 1. We also included the minimal achievable
time for every combination of source and destination
to make the assessment of the performance of the
algorithm easier.
We explain the calculation of the minimal transport

time by closer examining the value for source B1 to
destination A2, which is in the left-most and top-
most green highlighted value in the Table. Before
the conveying begins, the route must be reserved.
The shortest path for the REQUEST is B1→B2→A2.
The shortest path for the CONFIRMATION is
A2→B2→B1. Since sending and receiving a message
takes 1 ms, the minimal achievable route reservation
time is 4 ms. The shortest path for the conveying
time is identical to the shortest path of the REQUEST
message. Since conveying a package from one module
to a neighboring module takes
250 ms, the minimal achievable conveying time is

500 ms and the minimal transport time from source
B1 to destination A2 is 504 ms.
Minimal transport times can only be achieved by

our algorithm, if the shortest paths of all packages that
are concurrently in the system do not intersect. This
is illustrated in Fig. 11: The conveying of package IV
to destination E2 has already begun. Package I, II,
and III cannot start, even though their routes have
been confirmed, because first package IV has to pass
through module B2, C2, and D2 and their transport
times are negatively affected.
By dividing the mean transport time by the minimal

transport time,wecanassesswhich routesdiffer themost
from the minimal transport times. The most negatively
affected routes are the routes to the destinations A2
and E2 regardless from which sources the packages
enter the system. We highlighted the six combinations
in yellow in Table 8.2. The destinations A2 and E2
are negatively affected the most, because their directly
adjacent modules (B2 or D2) are bottlenecks in two
ways: Both every package from their adjacent source
module (B1 or D1) has to pass through them, and every
package to their adjacent destination module (A2 or E2)
has to pass through them. To avoid higher transport
times, we formulate the following best-practice rule for
practitioners: If sufficient space and enough modules
are available, no module must have more than one
adjacent source/destination module.

Fig. 11: Simulated exemplary layout

Our example layout is depicted in Fig. 11 and
consists of 9 regular modules, 3 source modules, and
9 destination modules. Every destination module is
distinguished by its own unique color. Packages are
colored in the same color as their destination. The
sourcemodules are at the top (row 1), and the destination
modules are at the sides (column A and E) and at the
bottom (row 5). A video of a real-world system with
a similar layout (but controlled by a different routing
algorithm) is shown in [37].
We define one simulation step as equal to 1 ms in the

real-world. Accordingly, our resolution for measuring
times is ±0.5 ms. The simulated communication speed
and the simulated conveying speed can be freely
defined. We set the time for sending and receiving
a message from a neighboring module to 1 ms. The
conveying speed is set to 2 m/s. Since the modules
are 500 mm × 500 mm, conveying a package from
one module to another takes 250 ms. We performed
100 simulation runs – each one with a different seed
value for our random number generator. The random
number generator determines the destination for every
package. We simulated 3 600 000 steps per simulation
run, which is equivalent to one hour in real-world time.
During the simulation we have set the maximum

number of iteration attempts imax to 10. No RESERVE-
LOCKS were sent during all simulation runs.
Subsequently, this aspect of the algorithm will not be
analyzed in the next Section. The value of nsafe (see
Eq. 1) was set to 1.

8.2 Statistical System Behavior Analysis
We calculated the sample mean and the standard error
of mean (SE) for all measurements. All values that we
measured were normally distributed. The sample mean
of the conveyed packages over all runs is 8 598 and its SE



14

on Automation Science and Engineering, Vol. 11,
No. 2, pp. 429–438, 2014. [Online]. Available:
https://doi.org/10.1109/TASE.2013.2278252

3. K. Furmans, F. Schönung, and K. R. Gue, “Plug-
and-work material handling systems,” Progress
in Material Handling Research, pp. 132–142,
2010. [Online]. Available: https://digitalcommons.
georgiasouthern.edu/pmhr 2010/1

4. S. H. Mayer, “Development of a completely
decentralized control system for modular
continuous conveyor systems,” Dissertation,
Karlsruhe Institute of Technology, Karlsruhe,
01.04.2009. [Online]. Available: https://publika
tionen.bibliothek.kit.edu/1000011463

5. M. Schwab, “A decentralized control strategy
for high density material flow systems with
automated guided vehicles,” Dissertation,
Karlsruhe Institute of Technology, Karlsruhe,
24.04.2015. [Online]. Available: http://dx.doi.
org/10.5445/KSP/1000047227

6. Z. Seibold, “Logical time for decentralized control
of material handling systems,” Dissertation,
Institut für Fördertechnik und Logistiksysteme,
Karlsruhe, 2016. [Online]. Available: http://
dx.doi.org/10.5445/KSP/1000057838

7. K.-U. Ventz, “Beitrag zur innovativen
Gestaltung von Intralogistik durch Kopplung
kleinskaliger Systeme,” Dissertation, Leibniz
Universität Hannover, Garbsen, 2016. [Online].
Available: http://www.tewiss-verlag.de/katalog/
details/?isbn=978-3-95900-083-3

8. I. F. Vis, “Survey of research in the design and
control of automated guided vehicle systems,”
European Journal of Operational Research, Vol.
170, No. 3, pp. 677–709, 2006. [Online]. Available:
https://doi.org/10.1016/j.ejor.2004.09.020

9. T. Le-Anh and M. de Koster, “A review of design
and control of automated guided vehicle systems,”

9 CONCLUSION AND OUTLOOK

In this publication, we have presented an algorithm
that can be used for both small-scaled and large-scaled
modular conveyors. We have proven the absence of
conflicts, determined the computational complexity,
and performed a behavior analysis. The performance of
our algorithm is as at least as good as the performance
of conventional sorting systems. We are currently
in the process of measuring the performance of our
algorithm for different layouts and different parameter
sets. The results will be published at a later time.
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