
Received: 28 November 2021 / Accepted: 20 July 2022 / Published online: 29 July 2022  
© The Author(s) 2022 This article is published with Open Access at www.bvl.de/lore

ABSTRACT

When optimal parcel delivery plans have to be made, a
logistic system with locker boxes as alternative delivery
locations can greatly increase efficiency. An important
decision in such a system is where to locate the locker
box stations. Hence, we extend the vehicle routing
problem with locker boxes to a location routing problem
with multiple planning periods. In every period,
decisions have to be made about which customers are
served at home and which are served at locker boxes
as well as how the used delivery locations are routed.
On the other hand, the decision of which stations are
opened is made only once. The objective function is
minimizing total cost, which comprises travel costs,
costs for compensating locker box customers, and site
costs for realized stations. We provide a mixed integer
programming formulation of the problem and propose
a metaheuristic solution method. We use self-generated
instances to compare the performance of the two
approaches and can show that the metaheuristic method
yields, on average, very good solutions – in most cases,
the optimal solution – in a short computational time.
We present and test different strategies for distributing
the locker box stations, including based on customer
clusters obtained by k-means, which works very well for
a variety of geographic customer settings. Moreover, we
analyze the utilization of locker box delivery in relation
to the length of customer time windows and observe
that tight time windows lead to a higher utilization.

KEYWORDS: Locker boxes · Location routing
problem · Metaheuristics
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1. INTRODUCTION

Numerous customers have taken to shopping online
everyday in the past years. For delivery companies,
this trend is reflected in the large trade volume of
parcels. In contrast to mail service, there is usually no
infrastructure for receiving the parcel at the customer’s
home address, such that the parcel can be dropped off
in a locked spot when the customer is not at home at the
time of delivery. Thus, to guarantee that the customer
can receive the parcel in person, the delivery has to
occur within a given time window, when the customer
is at home. This can lead to costly routing plans with
respect to the drivers’ working time and the driven
kilometers. The last point is especially problematic in
urban areas, where the governmental regulations aim
to reducing traffic and provide these areas some relief.
Moreover, the delivery staff’s sometimes extensive
workload and bad working conditions are known
problems. Their time pressure is often so high that
parcels are dropped off in front of the door without
the customer’s permission, resulting in cases of stolen
parcels. At other times, parcels are delivered to random
places without notifying the customer or they even
get lost on the way. A 2019 six-month survey in the
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these stations should be realized to achieve favorable
delivery solutions.
To bring together the operational day-to-day decisions

of delivery planning and the strategic decisions of
location planning, the problem is considered over
multiple periods. We have a complete set of customers
for the whole planning period, but not every customer
has a request in every period. Some customers may
have a demand on multiple days and others on only
one. Since the present work focuses on decisions of
locate locker box stations rather than future routing,
one can assume that the data for the customer patterns
and demand scenarios is derived from historical data.
Opening a station comes at some cost, denoted as site

cost, which is added to the total cost of the problem.
We relate the value of the site cost parameter to the
total routing cost of the solution without locker delivery.
The objective function of the MPLRPLB is

minimizing total travel cost plus total compensation
cost plus total site cost. The costs for routing and
compensation are summed up over the number of
periods. The costs for realizing locations are charged
only once within the planning horizon.
Concerning the capacity at opened locker box

stations, we assume that the number of free slots is the
same in every period, based on the assumption that the
per-period rate of incoming parcels (parcels dropped by
the delivery person) is, on average, equal to the rate of
outgoing parcels (parcels picked up by the customers).
This assumption is based on the fact that customers
have a pick-up deadline; within this deadline, lockers
are emptied while new parcels arrive to occupy free
slots. Parcels that are not picked up within the deadline
are sent back to the sender.
A solution to the MPLRPLB is provided by the set

of realized stations, the delivery plan containing the
information of which customers are served at home
and which are assigned to which station, and the routes
to visit the used delivery locations. Time windows for
home delivery customers and capacity restrictions at
stations have to be respected.
For the location planning part of our problem, we

can make decisions about the infrastructure of a
locker box system. Every established station incurs
costs. First, a site cost has to be accounted for setting
up the station, which covers the cost of acquiring or
renting the required space, buying the parcel locker
modules, etc. However, after setting it up, the locker
box station’s maintenance and operating costs also
have to be paid. Thus, running an unnecessary station
may mean unnecessary costs. Therefore, the goal is to
only realize stations that are necessary to guarantee
the system’s high efficiency level. The system’s degree
of efficiency is considerably influenced by the actual
locations of the locker box stations. Depending on
how they are distributed in relation to the customer
locations, different delivery solutions can be obtained.
A crucial characteristic that influences this behavior
is that customers are assumed to accept locker box

United States revealed that online order packages of
57% of consumers were left in an unsecured area after
delivery. Furthermore, 16% of the surveyed online
shoppers reported that their parcels had been stolen
(Clutch Logistic Survey (2019)). Such incidents cause
inconveniences for the recipients as well as the delivery
company or sender of the parcel, who have to cover the
damage. These incidents can at least partly be prevented
by using locker boxes to store the package safely.
As a response to the challenge of efficiently designing

parcel deliveries, new concepts have found their way
into current delivery systems. A well established and
well accepted concept is that of alternative delivery
options, where a customer can be connected with
several different locations for receiving parcels. The
home address can remain one of these locations, but
there may also be pick-up points like shops, post offices,
or parcel lockers. Roaming delivery locations, such as
the trunk of the customer’s car (Reyes et al. (2017)),
can also be considered alternative delivery locations.
In this work we consider the vehicle routing problem

with locker boxes (VRPLB), which was introduced
in Grabenschweiger et al. (2021), and extend it to a
location routing problem with a planning horizon of
multiple periods. First, we will briefly recap the existing
VRPLB. Then, we will motivate and introduce the new
model – the multi-period location routing problem with
locker boxes (MPLRPLB).
In the underlying model, the VRPLB, one

fundamental assumption is that a customer can be
served at home during a given time window or at
one of the locker box stations they have accepted. A
significant advantage of such locker boxes is that the
parcel delivery person is not restricted to a specific time
window when bringing the parcels there. In general, the
alternative delivery options provide great potential to
increase the efficiency of route planning. The flexibility
in location and time allows for the selection of the most
favorable option. In addition, the parcels are stored
safely, and customers can usually access the locker box
station at any time during the day. However, walking
to the station to pick up the parcels may mean extra
time and effort; thus, customers receive a compensation
payment when they are served at locker boxes. It is
assumed that customers accept locker box stations
that are within a certain radius of the home address.
Another characteristic of the VRPLB is that customers
can request more than one parcel of different sizes.
Additionally, the locker boxes themselves are assumed
to be of different sizes. The capacity of a locker box
station is restricted. Thus, only a limited number of
each size category is available. To allow for better
utilization of the capacity, one customer’s parcels can
be packed together into one slot.
In the VRPLB, the locker box station locations are

fixed. The idea of the new problem, the MPLRPLB, is
to allow for optimization with respect to these locations.
For this purpose, a set of potential locations is given as
input and a decision has to be made about which of
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stations within a certain radius from their home
address. Given a fixed value for the radius, the location
of the locker boxes defines how many and which are
accepted by a customer. This in turn contributes to
the decision of which customers are served at locker
boxes and at which station. If locations are realized that
are favorable in relation to the customers’ geographic
setting, bigger improvements may be possible through
locker box delivery than with poorly chosen stations.
Besides the suitability for customer acceptance, it can
also play a role how suitable the stations are located
when it comes to integrating them efficiently into
the driven routes. That is, visiting remote locker box
stations incurs a higher additional distance than visiting
those which are closer.
Since the set of potential locations is given as input

in our problem, optimization with respect to location
decisions can only happen within this scope. Thus, the
choice of the input location data is important. Of course,
one could simply generate a high number of potential
locations to guarantee good coverage of the customer
area. However, this comes at high computational cost,
since every additional potential location increases the
complexity of the model. Hence, we generate only a
reasonable number of stations by following certain
strategies. With the first strategy, the locations of the
potential stations are distributed randomly over the
customer area. In the second and third strategies, a
grid is laid over the area and locker box locations are
put in the center of a grid cell or in a random position
within the cell. For the fourth strategy, clusters are built
based on the customer locations using variations of the
k-means clustering algorithm. The centers calculated
within the algorithm are then used as locker box
locations. Having introduced the different strategies
for distributing stations, we aim to find out which one
enables the best solution.
The contribution of this work is three-fold. First, an

extension to the VRPLB is introduced – the problem
now also contains the strategic decision of optimally
choosing the locker box station locations. A mixed
integer programming (MIP) formulation is presented
for this extended problem. Second, a metaheuristic
method is proposed that integrates several operators
and heuristics, in addition to the routing operators, for
opening and closing stations. Third, different strategies
are provided for distributing the potential locations of
locker box stations. These aim to generate a good input
scenario.
This article is structured as follows: Section 2

reviews the related literature. In Section 3, a detailed
description and MIP formulation of the MPLRPLB
is given. In Section 4, we introduce a metaheuristic
method for the problem. In Section 5, we propose
several data generation strategies for distributing the
potential locations of the locker stations. In Section 6,
we conduct an experimental study where we compare
the performance of the metaheuristic method with
that of the MIP using self-generated instances. In the

experimental study, we also analyze the different data
generation strategies and extend standard instances
from the literature for these experiments.

2. LITERATURE REVIEW

In this article, we extend the VRPLB to a problem
where decisions about the locations of locker box
stations also have to be taken.
The integration of alternative delivery options

into logistic systems for customer service is still a
relatively new branch in vehicle routing. One of the
first contributions in this field was given by Reyes et
al. (2017). They consider a vehicle routing problem
where customers are served at so-called roaming
delivery locations. These locations represent the
customer’s car, which has different parking locations
over the day. Thus, the itinerary and possible delivery
locations are defined by the customer and optimization
of locations is not possible. Ozbaygin et al. (2017) use a
set covering approach to formulate the vehicle routing
problem with roaming delivery locations. Besides
roaming delivery, home delivery is also possible. To
solve the model, they came up with a branch-and-
price algorithm that allows them to solve instances
with up to 60 customers to optimality. In Zhou et al.
(2018), the alternative delivery locations in the form of
pickup points are modeled as the first level in a two-
echelon vehicle routing problem. The second echelon
represents delivery to the customer’s home address.
Thus, a customer can be served indirectly via the first
echelon or directly via the second echelon. They do
not consider capacity restrictions at the pickup points.
In the work of Orenstein et al. (2019), customers are
served solely at locker box stations. Service at the home
address is not considered. Hence, time windows are
also not part of the model. The set of available locker
box stations is fixed and using them comes without
any additional cost. Thus, no decisions with respect
to realizing stations have to be taken. The study of
Sitek and Wikarek (2019) provides a vehicle routing
problem where service at the home address is one
delivery option and alternative delivery options in the
form of post offices and locker boxes are also available.
Time windows are not considered in their model. In
Enthoven et al. (2020), a two-echelon vehicle routing
problem with alternative delivery options is studied.
In the first echelon, the goods are shipped by a truck
either to so-called covering locations or shared delivery
locations, such as parcel lockers, or to satellites from
where zero-emission vehicles, such as cargo bikes,
deliver the parcels to the customers. The customers can
specify which delivery option(s) they prefer. Service at
a covering location can only be provided if the customer
is within a certain range from the location. Capacity
restrictions appear for the delivery vehicles (trucks
and cargo bikes). A recent work on alternative delivery
locations was submitted by Mancini and Gansterer
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(2021). They define the vehicle routing problem with
private and shared delivery locations. Private locations
are locations where only one customer can be serviced,
for example the customer’s home address. The so-
called shared locations are pickup points, such as
parcel lockers, where more than one customer can be
served. Time windows were considered at the private
locations and capacity restrictions at the shared ones.
However, in their model, no optimization with respect
to the locations of the shared delivery points is done.
Another recent contribution to the field of alternative
delivery options comes from Grabenschweiger et al.
(2021). They introduce the vehicle routing problem
with heterogeneous locker boxes. Service can be
provided at a customer’s private address (but only
within a predefined time window) or at parcel lockers.
Different sizes are considered for the parcels and the
parcel lockers, assuming that one customer’s parcels
can be stored together in a locker box. This requires
integrating a packing problem into the VRPLB. The
locker boxes are restricted in size and the locker box
stations are capacity restricted. Decisions regarding
the locations of the locker box stations are not part of
the problem. Dumez et al. (2021) present a problem
where each customer has a set of acceptable delivery
options, each of which is associated with a preference
level and time window. The delivery options can be
the home address or shared delivery locations, such as
locker box stations or post offices. The shared delivery
locations are capacity restricted. In Dragomir et al.
(2022) a pickup and delivery problem with alternative
locations is studied. The alternative locations come in
form of roaming delivery locations in the background
of consumer to consumer marketplaces, where the
seller’s as well as the buyer’s itinerary change over the
day. Time windows are given for the different locations.
Capacity restrictions at the delivery locations are not
relevant for this problem.
There is a field of location routing problems, where

decisions about the locations of logistic facilities have
to be taken jointly with decisions about the routing
of customers/delivery locations. Surveys about this
problem class can be found in Nagy and Salhi (2007)
and Prodhon and Prins (2014).
Concerning location routing problems in the field

of alternative delivery locations, the following studies
are available. Deutsch and Golany (2018) contribute
a work about where to locate locker box stations and
how many stations should be realized. However, they
do not account for capacity restrictions at the locker
box stations, and routing decisions are not part of
the problem. Hence, this work can be classified as
an uncapacitated facility location problem. They use
an objective function that accounts for revenue from
customers who use locker box delivery, costs for setting
up the stations, and costs for compensating customers
who have to travel to the locker box. In Veenstra et al.
(2018) a problem is investigated where medical products
are delivered to patients either directly to the home

location or via locker boxes. Only patients within a
certain range from a locker can be served at that locker.
Decisions about which locker stations should be opened
have to be taken with decisions about how to route the
open locker stations and home-serviced patients. When
a station is opened, all patients within a certain radius
around it have to be served there. Home delivery is then
not an option for these patients. The routes for visiting
the home service patients are separated from the routes
for visiting the used locker stations. Time windows
at the delivery locations are neglected. Opening a
locker station is related to an opening cost. However,
capacity restrictions at the stations are not considered.
Schwerdfeger and Boysen (2020) study a problem
with mobile parcel lockers, where the locations of the
lockers change throughout the planning horizon. The
parcel lockers are moved around such that customers
have their preferred locker box station close by at least
once during the day. The number of required locker
box stations should be minimized while guaranteeing
service to all customers. Locker box delivery is the
only delivery option in this problem. Routing decisions
with respect to customers or used locker stations
are not needed. Kahr (2022) proposes the stochastic
multi-compartment locker location problem where
the locations of the locker stations are to be chosen
such that expected utility of covered customer demand
is maximized (demand is assumed to be uncertain).
Furthermore, the configuration of a station has to be
decided by combining different locker box modules
such that the given budget and space constraints are
respected. The modules differ with respect to the
number of compartments in each size category; some
compartments may have special features, for example
storage of frozen products. Routing decisions are not
part of this locker location problem and it is assumed
that customers are served at locker boxes when possible.
Boysen et al. (2021) present a survey about novel last-
mile delivery concepts, including cargo bikes, drone
delivery, autonomous delivery robots, stationary and
mobile parcel lockers, crowdshipping, trunk delivery,
etc. They evaluate existing work from the literature,
but also see a big need for further research in this area.
To the best of our knowledge, the problem we

introduce in this work has not been considered in the
literature thus far. We combine the VRPLB with a
location problem. Multiple periods are used to connect
the operational single-period problems of routing with
the strategic location decision. We take time windows
for customer home delivery into account as well as
capacity restrictions at locker box stations. Customers
served at locker boxes receive a compensation payment.
The location problem is considered as selecting the
best locations from a set of potential locations and the
site cost for realized stations is added to the objective
function of total cost.
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3. PROBLEMDEFINITION AND
MATHEMATICALMODEL

In this part we give a mathematical formulation of
the MPLRPLB. The formulation is based on the one
given in Grabenschweiger et al. (2021) for the relaxed
model with unit-size parcels and locker boxes. In
that model, the heterogeneous parcel and locker box
sizes are transformed into unit-size values. To check
the feasibility of a locker box delivery with respect to
station capacity, instead of solving a packing problem,
one only needs to check whether the aggregated demand
fits the aggregated capacity of a station.
Here we extend Grabenschweiger et al. (2021) to a

multi-period setting.There arem customersC={1, ··· ,m}
and a customer i ∈ C is identified via the node {i},
which refers to the home address. The number of unit-
size parcels a customer i demands in period t is denoted
by qit , where qit can also be 0 for certain periods, when
the customer has no demand in that period. However,
we assume that each customer has a demand greater
than 0 in at least one period.
We consider a planning horizon of t =1, ··· ,T periods.

Periods can be interpreted as days, weeks, and so on.
An unlimited number of homogeneous vehicles

is available to perform the trips. We assume that
the vehicle capacity is not restrictive based on the
assumption that parcels are small enough for the vehicle
to transport the required amount. In the absence of a
vehicle capacity restriction, we can give a problem
formulation that does not ask for a vehicle index. Thus,
it can be omitted as in Mancini and Gansterer (2021).
The set of potential locations for the locker box

stations is given by B = {m + 1, ··· ,n}. The site cost of a
locker box station k∈B is denoted by fk. When station k
is opened, it provides a capacity of Qk. We can assume
that the rate of incoming parcels (parcels dropped at a
station) per period is approximately equal to the rate
of outgoing parcels (parcels picked up from a station).
Thus, the number of available slots can be assumed to
remain unchanged over the periods.
A single depot exists from where the vehicles leave

at the beginning of a trip and where they return to at
the end. Furthermore, by Ct , we define the customers
that have a positive demand in period t, that is, who
have to be served in this period. The home locations
of the customers, the potential sites for locker box

stations, and the depot nodes form the complete set
of nodes for period t, denoted by Nt = {0}∪Ct ∪ B.
Travel distance from node i to node j is given by dij
and the corresponding travel time by tij. Without loss
of generality, we assume that dij = tij for all nodes.
Travel costs are assumed to be proportional to travel
distance. For simplicity, we assume that the cost per
distance unit is 1.
For each customer i, there is a possibility of serving

him/her at the home address, but only during a
predefined time window [Ei,Li]. The service time
for the home address is given by si. For the depot,
we set the time window such that every tour has to
be completed within a given maximal tour duration,
denoted by Dmax. The same is done for the delivery
time windows of the locker box stations. Thus, the time
window of the depot and the stations is assumed to be
[0, Dmax].
In addition to home delivery, a customer can be

served at a locker box station. We assume that a
customer i accepts all locker box stations located within
a certain coverage radius ρ from their home address.
The resulting set of accepted locker box stations for
customer i are denoted by Bi ⊆ B. A compensation
cost c has to be paid to a customer who receives locker
box delivery.
The routing decision variable xtij is binary and is 1

if node j is visited directly after node i in period t; it is
0 otherwise. The binary decision variable ytik indicates
whether customer i is served at locker box station k in
period t. The binary decision variable zti t takes value
1 if customer i is served at home in period t and 0
if this customer is served at a locker box station in
period t. The continuous decision variable Sti gives the
service start time at node i in period t. For the depot
node, we define St0 to be the earliest departure time.
The binary decision variable wk is 1 when locker box
station k is opened and 0 if it is not opened. When a
locker box station is opened, it remains open for the
whole planning horizon.
The total cost in this problem is total traveled distance

plus total compensation costs for serving customers at
locker boxes plus total site cost for the open locker box
stations. Traveled distance and compensation costs are
operational costs and are summed up over all periods
t = 1, ··· ,T to get the total cost for the whole planning
horizon. The site cost of an open station is charged only
once for the whole planning horizon.

(1)

(2)

(3)

min ∑
t∈T

∑
i∈Nt

∑
j∈Nt

di jxt
i j + ∑

t∈T
∑

i∈Nt

∑
k∈Bi

cyt
ik + ∑

k∈B
fkwk

∑
j∈Nt\{i}

xt
i j = ∑

j∈Nt\{i}
xt

ji ∀t ∈ T,∀i ∈ Nt

yt
ik ≤ ∑

j∈Nt\{k}
xt

k j ∀t ∈ T,∀i ∈Ct ,∀k ∈ Bi

subject to
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Constraints (2) assure route continuity. Constraints
(3) connect the routing decision variables x with the
locker box delivery decision variables y. To explain, if
a customer i is served at station k (i.e., ytik is 1), then
this station k has to be included in the routing solution,
which is guaranteed by requiring that at least one of
the respective arc variables xtkj has to be 1. Constraints
(4) connect the routing decision variables x with the
home delivery decision variables z. Similar to before,
if customer i is served at the home location (i.e. zti is 1),
then the home location has to be visited within one
of the routes. Constraints (5) establish the connection
between the routing variables x and location variables w.
Only opened stations (i.e. wk is 1) can be used for locker
box delivery. Constraints (6) ensure that the demand
of a customer is fulfilled by serving him/her either at
the home address or at an accepted locker box station.
Constraints (7) guarantee that capacity at the locker
box stations is not exceeded. Constraints (8) ensure that
the time windows at visited locations are respected.
Furthermore, they connect the service time variables
with the routing variables and are needed for the correct
assignment of visited locations to vehicles. Constraints
(9) maintain the continuity of service time variables.
Through constraints (10 we capture the requirement
that vehicles return to the depot within the predefined
maximal tour duration. Constraints (11)–(15) define the
scope of the decision variables.

4. METAHEURISTIC SOLUTIONMETHOD

In addition to the presented MIP formulation of the
problem, we propose a metaheuristic solution method

for solving larger instances of the MPLRPLB, since in
Section 6.2 the computational experiments will show
that the MIP can only solve instances with up to 25
customers. Here, an outline of the method’s building
blocks can be seen.

– Construction phase (see Subsections 4.2 and 4.3):
– Construct a starting location solution with
the ADD construction heuristic (Kuehn and
Hamburger (1963)). This means, iteratively
add an open station until the solution cannot
be improved anymore. To evaluate a scenario
of open/closed stations in the ADD algorithm,
the MPLRPLB is solved by solving a number of
single-period problems using the metaheuristic
presented in Grabenschweiger et al. (2021).
The single-period costs (consisting of routing
and compensation cost) are added up over the
periods and site cost is added to obtain the
solution’s total cost.

– Try to find a better starting selection of open
stations through a modified ADD construction
heuristic. This heuristic considers in the first
iteration not only the best station but also ones
that are not the best. The different scenarios of
selected stations are evaluated as in ADD.

– Improvement phase (see Subsection 4.4):
– Starting with the location solution obtained in
the construction phase, improvement operators
are iteratively applied to the current best
location solution. The operators open a closed
station, close an open station, and swap an open
and closed station. By doing so, a new set of
open stations can be analyzed. Therefore, the

zt
i ≤ ∑

j∈Nt\{i}
xt

i j ∀t ∈ T,∀i ∈Ct

∑
j∈Nt\{k}

xt
k j ≤ wk ∀t ∈ T,∀k ∈ B

∑
k∈Bi

yt
ik + zt

i = 1 ∀t ∈ T,∀i ∈Ct

∑
i∈Ct

qityt
ik ≤ Qkwk ∀t ∈ T,∀k ∈ B

Ei ∑
j∈Nt\{i}

xt
i j ≤ St

i ≤ Li ∑
j∈Nt\{i}

xt
i j ∀t ∈ T,∀i ∈ Nt

St
i + si +di j −M(1− xt

i j)≤ St
j ∀t ∈ T,∀i ∈ Nt ,∀ j ∈ Nt \{0}

St
i + si +di0 ≤ Dmax ∀t ∈ T,∀i ∈ Nt

xt
i j ∈ {0,1} ∀t ∈ T,∀i, j ∈ Nt

yt
ik ∈ {0,1} ∀t ∈ T,∀i ∈Ct ,∀k ∈ B

zt
i ∈ {0,1} ∀t ∈ T,∀i ∈Ct

wk ∈ {0,1} ∀k ∈ B

St
i ≥ 0 ∀t ∈ T,∀i ∈Ct

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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single-period locker box routing problems are
solved as in the construction algorithms.

The complete algorithm will be summarized in
Subsection 4.5. However, first, let us describe the
building blocks separately. We start with the single
period problem in Subsection 4.1.

4.1. Solving the single-period VRPLB problem
Within the location heuristics and operators described
in this section, a number of single-period problems have
to be solved. These single-period problems correspond
to the VRPLB introduced in Grabenschweiger et al.
(2021). The solution method developed and presented
within that paper is used to solve the single-period
VRPLB. A short summary of the method is given
below.
We initialize a solution by solving the problem as a

classical vehicle routing problem with time windows
(VRPTW), where all customers are served at their
home address such that the given time windows are
met and total distance is minimized. Adaptive large
neighborhood search (ALNS) is used to solve the
routing problems within the method.
Starting with this “pure home delivery solution” we

apply several operators to evaluate which customers
should be served at which locker box stations such that
total cost (i.e., traveled distance plus compensation cost)
improves.

– The first operator, “reduce distance by assigning
customers to locker boxes”, simply checks which
customers reduce distance the most when they are
served at a locker box station instead of at home.

– The second operator, “fill up locker box stations”,
focuses more on maintaining a low number of used
stations and checking which locker box stations
are beneficial for use. Therefore, a station is
always filled up until no more new customers can
be assigned to it. A new station is not used until
that criterion is met.

– The third operator, “remove tour”, tries removing
one complete tour from the routing solution by
assigning all customers of that tour to locker boxes
or other tours.

The solution obtained after applying one of the
described operators then undergoes an improvement
phase, where the selection of home delivery and locker
box customers is re-optimized. Several improvement
operators are used:

– Swapping home delivery and locker box
customers.

– Moving one or more locker box customers back to
home delivery.

– Moving one or more customers from home
delivery to locker boxes.

– Closing a locker box station and reassigning the
“free” customers to other stations.

For more details, see in Grabenschweiger et al. (2021).

4.2. Construction heuristic ADD
The ADD construction heuristic is a greedy heuristic
and was first presented by Kuehn and Hamburger
(1963). It starts with a scenario where all stations are
closed (in our problem, this means that all customers
are served at their home address). We subsequently
open a station until no improvement in total cost is
possible. Recall that, besides routing cost, total cost also
includes a compensation cost for serving customers at
locker box stations and an opening cost for stations.
Thus, when we open a station to make additional locker
boxes available, we may reduce traveled distance but
incur compensation and opening costs.
The first station to be opened is the one that provides

the biggest improvement in total cost when exactly
one station is opened. Then, we try to add another
open station to the already opened one. Therefore, we
evaluate the change in total cost when one of the not
yet open stations is realized. This is done for each of
the not yet open stations, and the best one is opened
in addition to the one already open. We add new open
stations until the solution cannot be improved further.
Note, total cost is always evaluated by solving multiple
single-period problems for the scenario-specific set of
open locker box stations.
At the end of the ADD construction heuristic, we

obtain a set of open locker box stations and a solution for
the MPLRPLB. This solution contains the information
about how the home delivery customers and used
stations are routed and which customers are served at
which locker box station in each period. Note that not
every open station must be used in every period.
Algorithm 1 provides an outline of the ADD

construction heuristic.
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4.3. Modified ADD
The ADD heuristic in its standard form as described
in Section 4.2 is a greedy heuristic that takes the best
location to be opened in each iteration based on the
already selected station(s). In doing so, combinations
of stations that perform well when opened together may
not be found.
The idea now is to consider not only the best station

to be opened in the first iteration of ADD, but the
second-, third-, mth-best one and take it as a starting
point for the next iteration. This idea can be seen as a
best-first search, which is also used in the beam search
algorithm (Lowerre (1976)).
If we want to find out all the possible combinations

of open stations, we would end up in an enumeration
procedure. With this, we would find the best choice
of realized stations (best with respect to the heuristic
solutions obtained for the single-period routing
problems); however, the computational effort would
be considerably high, particularly for an increasing
number of potential locations.
To keep the computational effort of the modified

ADD heuristic on a reasonable level, we make two
simplifications. First, we allow a non-best station to
be opened only in the first iteration of the algorithm
and second, we focus on promising locations when
evaluating which combinations should be opened.
We classify a location as promising when it takes

a good ranking with respect to solution quality in
scenarios where exactly one station is open. These
scenarios have already been evaluated when the
standard ADD heuristic is executed. In order to avoid
redundant calculations, we save the ranking that each

station takes in a single station scenario in the standard
ADD. The station that leads to the best total cost is the
first one in the sorted list of stations. The station that
leads to the worst total cost ranks m, where m is the
number of potential locations, and goes last in the list.
The idea is then to work with a restricted candidate

list. This means we define a list length L that determines
how many solutions we consider as promising for being
opened in an iteration of the modified ADD heuristic.
In contrast to the standard ADD, in the first iteration

of the modified ADD algorithm, we not only allow
the best station to be opened, but we also try every
location from the set of promising locations as a first
open station. For each of these single location scenarios,
further open stations are added iteratively in a greedy
manner (as in the standard ADD), until new open
stations do not lead to a better solution anymore.
We could also execute the iterations after the first one

in a non-greedy manner. However, this would increase
the computational time considerably. Restricting it
only to the first iteration keeps the complexity of the
modified ADD manageable. Moreover, we think that
this tackles particularly those cases where two or more
stations are opened, since a poorly chosen first station
may have a stronger effect here.
The best solution is then compared to the solution

obtained with the standard ADD heuristic. The better of
these two is taken as the incumbent solution and serves
as a starting point for the improvement phase, with the
operators described in Section 4.4.
The modified ADD algorithm is summed up by

Algorithm 2.

Algorithm 1 Construction heuristic ADD
1: I = {1, · · · ,m}...set of all locker box stations
2: I1 = {}...set of opened stations
3: s...solution, sbest ...best solution
4: Generate a starting solution s0, where all stations are closed
5: s ← s0, sbest ← s0

6: while Improvement do
7: for k ∈ I do
8: Evaluate solution with k opened. This yields s.
9: if f (s)< f (sbest) then

10: sbest ← s, I1 ∪{k}
11: end if
12: end for
13: end while
14: return sbest , I1
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4.4. Improvement phase to re-optimize selection
of locker box stations

The improvement phase of the complete metaheuristic
starts from the best location routing solution found in
the construction phase either by the ADD or modified
ADD algorithm. Different improvement operators
that aim at re-optimizing the current selection of open
stations are used. We propose an operator that opens
a new station, one that closes an open station, and one
that swaps an open station with a closed one. They are
all applied in an iterative manner. In each iteration,
the used improvement operator is selected randomly
and applied to the current best solution. In case the
improvement operator gives a selection of open stations
that leads to a better solution, this solution is considered
the new best solution. To evaluate if the new set of
open stations is better, we solve the locker box routing
problem for each period – given the changed location
scenario – and compare the total cost of the current
best solution and the new one. We set an iterator that
counts the number of unsuccessful iterations, that is,
iterations where the improvement operator did not yield
a new best solution. The overall improvement phase
ends when the predefined threshold of unsuccessful
iterations or a predefined time limit is reached.
The used improvement operators are described below.

4.4.1. Add location
With this operator, we go through the set of not yet
open stations and check whether one could be opened
such that a better solution to the MPLRPLB is obtained.

4.4.2 Drop location
This operator evaluates whether it is beneficial to close
one of the currently open stations. It can only be applied
if more than one station is open in the current best
solution.

4.4.3. Swap
With the swap operator, we open a currently closed
station and close a currently open one. Here, we work
with promising solutions again to reduce the number
of swaps to be evaluated. Thus, locations currently not
in use and identified as the least promising in a single
station scenario are not considered for a swap. This can
be considered a restricted candidate list, often used in
local search procedures.
The swap operator is applied following a best-

improvement strategy, that is, we evaluate all potential
swaps and take the best solution (provided there is an
improving solution at all).

4.5. The complete metaheuristic method
Algorithm 3 provides a pseudocode for the complete
metaheuristic.

Algorithm 2 Modified ADD
1: I = {1, · · · ,m}...set of all locker box stations
2: Ip...set of promising locker box stations
3: I′1 = {}...set of opened stations in incumbent solution
4: I1 = {}...set of opened stations in best solution
5: s...solution, s′...incumbent solution, sbest ...best solution
6: Generate a starting solution s0, where all stations are closed
7: s ← s0, sbest ← s0

8: for k ∈ Ip do
9: s ← s0, I1 = {}

10: while Improvement do
11: for k ∈ I do
12: Evaluate solution with k opened. This yields s′.
13: if f (s′)< f (s) then
14: s ← s′, I1 ∪{k}
15: end if
16: end for
17: end while
18: if f (s)< f (sbest) then
19: sbest ← s, I1 = I′1
20: end if
21: end for
22: return sbest , I1
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5. DATA GENERATION STRATEGIES

In the following, we propose different strategies to be
used when possible locations for locker box stations
have to be generated. The way the possible locations are
distributed may influence solution quality considerably.
We want to determine which strategy should be used to
generate data such that the optimization potential with
respect to locker box delivery and location selection
can be exploited well.
This is related to the work by Grabenschweiger et al.

(2018), where different strategies for locating the so-
called optional nodes were tested to determine which
one leads to good solutions. The “random” and “grid”
strategies are considered here in a slightly adapted
form. In addition, we consider k-means clustering
algorithms for locating the nodes of locker box stations.
When the proposed data generation strategies are

applied to real-world instances where the customer
nodes come from a real map, the outcome may suggest
spots for the lockers that do not fit the street layout.
In this case, one could look for the closest feasible
location for a locker station. There might also be more
sophisticated approaches that model the problem of
finding good locker station locations, in which you

could incorporate additional attributes such as the
availability of nearby parking lots. However, this is
beyond the scope of our article. We aim to provide
concepts for generating locations. In Subsections 5.1
to 5.3, we propose three such general strategies, a
purely random distribution of locker boxes, locating
them based on clustering of the customers, and a grid
structure to ensure a rather geometric distribution of
locker locations. These concepts can also be adapted
to real world situations.

5.1. Random distribution of locations
With this strategy, the potential locations are chosen
randomly within the relevant area. Implementing it in
the process of instance generation is simple. However,
the potential savings generated by using locker boxes
may be restricted when the locations are distributed
poorly. This may happen if there is no locker box
available in a region that would be favorable in terms
of locker box delivery.

5.2. Distribution of locations on a grid structure
Another strategy is to put a geometric grid structure
over the customer area. The area is divided into grid
cells and locations are distributed such that a potential

Algorithm 3 Metaheuristic solution method for the MPLRPLB
1: I = {1, · · · ,m}...set of all locker box stations
2: Ip...set of promising locker box stations
3: I′1 = {}...set of opened stations in incumbent solution
4: I1 = {}...set of opened stations in best solution
5: s...solution, s′...incumbent solution, sbest ...best solution
6: Generate a starting solution s0, where no locker box delivery is used; that is, solve the VRPTW for each period by ALNS; sum up period

routing costs
7: sbest ← s0

8: Initialize a set of open stations by ADD, yielding solution s.
Given a set of open stations in the different iterations of ADD, the single-period problems are solved by the corresponding algorithm and
the resulting routing, locker box compensation, and site costs are added up.

9: if f (s)← f (sbest) then
10: sbest ← s
11: end if
12: Starting with s0, try to find a better set of initial open stations by modified ADD, yielding solution s.

For the iterations of modified ADD, the different location scenarios are evaluated by solving the single-period VRPLB and comparing total
cost.

13: if f (s)← f (sbest) then
14: sbest ← s
15: end if
16: while limit on number of iterations without improvement or time limit not reached do
17: Choose an improvement operator randomly.
18: The changed selection of open stations obtained with the improvement operator is evaluated by solving the single-period problems.

This yields solution s.
19: if f (s)← f (sbest) then
20: sbest ← s
21: end if
22: end while
23: return sbest
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location is available in each cell. For “random grid”, the
location is put on a random spot within a cell. For “fixed
grid”, the location is inserted in the center of a cell.
This gives the most uniform distribution of locations
across the map.

5.3. Distributing locations by k-means
Here, the locations of the locker box stations are chosen
based on k-means clustering. In general, k-means
clustering aims at dividing given data points into k
clusters, such that each data point is assigned to the
cluster that has the closest mean. The mean of a cluster
also called a centroid.
In our problem, the data points are the coordinates of

the customer locations. The parameter k is the number
of potential locker box stations we want to generate.
Then, k clusters are computed and a potential locker
box is located in the centroid of the corresponding
cluster.
In general, k-means clustering belongs to the class

of NP-hard optimization problems. However, there are
several approximation algorithms that work simply and
efficiently.
The k-means algorithm of Lloyd (1982) is often

considered the standard version of k-means algorithms.
An outline can be seen in Algorithm 4.
In the k-means algorithm of Lloyd (1982), the

centroids are initialized randomly, which is easy to
implement. However, studies have shown that the
initialization of the centroids is crucial, since the
iterative computation of the clusters starts from there,
and the clustering result may be different depending
on how the seeds are chosen. In a modified version,
called k-means++ (Arthur and Vassilvitskii (2007)),
the idea is that the starting centroids are chosen with
respect to some dissimilarity measure. The rest of the
algorithm works as stated in Algorithm 4. Hence, only
line 3 changes.

To explain, the initialization in k-means++ is done
as follows: From the input data points, one is chosen
randomly to serve as the first centroid. Then, new
centroids are added iteratively until the number k is
reached. In each iteration, a data point is chosen that
is dissimilar to any of the existing centroids (where
dissimilarity is measured as being far away). This can
be done in two ways. First, the data point farthest away
from its closest centroid is taken. Second, some more
randomness is included by defining the probability that
a data point is chosen to be proportional to its distance
to the closest existing centroid. In particular, this means
that the higher the minimum distance of a data point to
its closest centroid, the more likely it is that this data
point is chosen.
So, we have in total three variants for initializing the

centroids. The first corresponds to the standard k-means
and randomly selects the initial centroids. The second
and third correspond to k-means++ and work with a
dissimilarity measure based on the chosen centroids.
Independent of the initialization strategy used, the

rest of the clustering algorithm is the same. That is,
after initialization of the centroids, we assign points
to clusters and update centroids as described in
Algorithm 4.
Since some randomness is included in each of the

three centroid initialization mechanisms, we are likely
to obtain different clustering solutions in different
runs. Thus, the idea is to run each mechanism for 50
iterations and take over all mechanisms and iterations,
the centroids of the clustering solution with the best
objective value as potential locations for locker box
stations. The objective function for the clustering
problem is the minimization of the sum of squared
distances from the data points to their closest centroid.

Algorithm 4 k-means algorithm Lloyd (1982)
1: x1, . . . ,xm...data points; customer locations
2: k...number of locker box locations
3: Initialization: Randomly select centroids µ1, . . . ,µk

4: Initialization: Clusters S1, . . . ,Sk → /0
5: repeat
6: Assign each data point to closest centroid
7: for i = 1, . . . ,m do
8: j ← argmin j∗ ||xi −µ j∗ ||2
9: S j ← S j ∪{i}

10: end for
11: Update centroids
12: for j = 1, . . . ,k do
13: µ j =

1
|S j | ∑i∈S j xi

14: end for
15: until Clusters do not change or maximum number of iterations is reached
16: return Clusters S1, . . . ,Sk and centroids µ1, . . . ,µk
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5.4. Graphical illustration of the
data generation strategies

Figure 1 shows a possible result when the presented
strategies are applied to an example instance of

Solomon’s instance set C1 (Solomon (1987)). The nodes
are depicted in a square of size 100 × 100.

(a) random (b) fixed grid

(c) random grid (d) k-means

Fig. 1: Different strategies for generating locations of potential locker box stations.
Circles represent customer nodes and triangles represent locker box locations.

One can see in Figure 1a that, with “random”, no
locker box station is located in the top left corner, while
two locations are generated in the top right and bottom
right corners, although no customers live there. With
“fixed grid”, a very uniform, geometric distribution of
locker box locations is obtained that covers the whole
area. With “random grid”, we have one station in every
grid cell; however, two stations could be generated very
close together when they are located next to the same
cell border. With the two grid strategies, we have a
better coverage of the whole area. However, the actual
customer locations are not considered, which also leads
to station locations quite far away from the customer
clusters. With the “k-means” strategy, the geographic
structure of the customer distribution flows in through
the algorithm itself. This can be clearly seen in the
corresponding Figure 1d, where the locker box locations
are within or between clusters of customers.

6. COMPUTATIONAL STUDY

The models and methods are coded in C++. The exact
models are solved by CPLEX 12.9 (multithreading is
switched off). All tests are executed on an Intel Xeon
Processor E5-2670 v2 (25M Cache, 2.50GHz) with a
3GB RAM limit. Linux is the operating system.

6.1. Compare different strategies for generating
locations of locker boxes

We first compare the outcome of the various strategies
for distributing locker box stations described in
Section 5.

6.1.1. Test instances
To test the different strategies, we use a set of instances
generated based on the instances from Solomon (1987).
Therefore, the spatial, time, and demand information

of the customer nodes is taken as in the original set
from Solomon (1987). Regarding the number of demand
periods, we face a single-period problem, where all
given customers require service. The reason we work
with the Solomon instances here is that they feature
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a special distribution structure of the customer nodes
and with respect to the time windows. A complete
instance contains 1 depot and 100 customers. The
customer locations are distributed within a [100 ×
100] square. The instances are grouped according to
their characteristics, and the groups are named C1, C2,
R1, R2, RC1, and RC2. Each group comprises 8–12
instances. In sets C1 and C2, the customers’ locations
show a clustered structure. In R1 and R2, the customers
are distributed randomly. In RC1 and RC2, half the
customers are located in clusters and the other half
are located randomly. In C1, R1, and RC1, the time
windows are rather narrow, while in C2, R2, and RC2
they are broader.
Within one instance set, the geographic data of

the nodes remains unchanged. Thus, for example, in
instance C101 to C109, the customers’ coordinates are
the same. This holds true for the demand data. The
only difference in customer information comes from
the time windows.
In order to create the locations of the potential

locker box stations for our instances, we use the data
generation strategies introduced in Section 5. We
consider a set of 9 potential locker box sites. This is
because 9 is obtained when using a 3x3 fixed grid
as described in Section 5.2. In order to have a fair
comparison, we choose the same number of locker
box stations also when using the random and clustering
strategies as described in Sections 5.1 and 5.3.
Another decision made in the application of the data

generation strategies to the set of Solomon instances,
is not to take the full [100 × 100] square, but to narrow
down the potential distribution area for locker stations
for each instance to the area where customers of this
instance are actually located. This guarantees that
the grid spans only the relevant area, thus bringing
the center points of the cells closer to the customers.
Furthermore, for the strategy “random”, it makes sense
to avoid locating locker sites in areas where no customer
can be found. When the locations are distributed by
k-means, the algorithm itself drags the cluster centroids
to the relevant customer area.
Note, when we extend the Solomon instances by the

locker box information, the locations obtained by “fixed
grid” and “k-means” are the same within the instances
corresponding to the same instance set (e.g., within
all instances belonging to C1) because the customer
locations are the same. For “random” and “random
grid”, the locker box locations are different in every
instance.
For each instance, the distance matrix is obtained by

calculating the distances between two nodes, which
is calculated based on Euclidean metrics. The time
window of the depot represents the maximal duration of
a route. The time window of a locker station is assumed
to be the same as the time window from the depot. For
the service time of a locker box station, we take twice
the service time given for the customers. A customer
accepts service at the home address or at locker box

stations located within a predefined radius ρ from the
home address. We choose this parameter to be 30, since
it has proven to provide a good measure in relation to
the overall geographic setting.
For the locker box stations, we assume that there is a

unit-size capacity of 250 slots available in each period.
Within one instance, the site costs are the same for each
station. Over the whole set of instances, this parameter
is not fixed, but is chosen dependent on the solution cost
without using locker boxes. During the computational
experiments in this section, we observed that the site
cost parameter has a strong influence on locker box
utilization, or in particular, on how many stations are
opened. If this parameter is too high, in the extreme
case, no locker box stations are opened; if it is too low,
too many stations are opened, making the location
selection problem not really a problem of selection.
We could not find a fixed site cost value such that a
reasonable number of stations is used for all instances.
The reason for this lies essentially in the fact that there
are significant differences in the objective function
values of the instances. Consequently, we decided to
choose the site cost for an instance in relation to the
solution cost without locker box utilization. For the
instance sets R1, R2, RC1, and RC2, we came up with
5% as a proper ratio with respect to solution cost. Thus,
for an instance with solution cost 1000 in absence of
locker boxes, the site cost value would be 50. For the
instances of sets C1 and C2, we have to reduce the site
cost percentage to 4% in order to achieve at least one
open locker box station in all cases.
The parameter c that represents the compensation

cost for serving a customer at a locker box is set to
5, as suggested in Grabenschweiger et al. (2021).
A change for this value is made for instance set C2,
where we set c = 3. This is necessary because – even
with an already reduced site cost percentage – we do
not achieve a meaningful utilization of locker boxes.
For the instances with clustered customer regions (i.e.,
C1 and C2), it seems that using locker boxes does not
provide such strong efficiency effects as it does for the
other instances. Thus, the cost parameters have to be
lower to obtain a comparable use rate of locker boxes.
This may be traced to the geographical structure of the
C1 and C2 instances, since customers in clusters are
easier to serve in efficient routes, and taking only some
customers out of a route to serve them at locker boxes
does not lead to high enough cost reductions. Another
aspect that obviously influences the attractiveness of
locker box delivery is the length of the time windows.
This conclusion emerged in the parameter tuning phase,
as we can see in the choice of a lower compensation
cost value for the clustered instances with wider time
windows (C2) compared to the clustered instances
with tighter time windows (C1). This observation is
also plausible, since home delivery is possible only
during the given time windows and the tighter time
windows are, the harder it is to pack customers feasibly
into delivery routes. With the possibility of serving
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customers at locker boxes, significant savings with
respect to routing costs may be achieved. Conversely,
for the C2 instances, locker box delivery may not have
as great potential for cost savings, since planning
customers in efficient home delivery routes is easier
when time windows are wider.

6.1.2. Settings for the construction and
improvement phase of the metaheuristic
method

The instances in this part of the computational study
contain 100 customers and 9 locker box stations.
Comparing the MIP and metaheuristic methods in the
next section will validate that we can not solve instances
of this size by MIP. Hence, we use the proposed
metaheuristic. However, instances of this size mean a
high computational effort even for the metaheuristic.
One characteristic that drives this behavior is, for
example, the number of locker box stations – since
an increasing number of stations makes parts of the
algorithm more and more complex. The more stations
we have, the more scenarios of open/closed stations
have to be evaluated in the construction phase as well
as in the improvement phase. Moreover, every change
made in the scenario of open stations requires a call to
the algorithm for the one-period problem. Thus, first,
we restrict the algorithm for the one-period problem to
a time limit of 10 minutes. All parameters used in the
the algorithm for the one-period problem are set as in
Grabenschweiger et al. (2021). For the ADD heuristic
in the construction phase of the location planning
algorithm, we do not impose any runtime restriction.
For the modified ADD heuristic, which works with a
restricted candidate list, the scenarios with a single
open station are sorted in a list by increasing order of
total cost. The number of promising stations, that is the
position in the list up to which we consider stations for
evaluation in the first iteration of the ADD algorithm
(length L of the restricted candidate list), is determined
by multiplying the list length by a random factor from
the range [0.4, 0.6]. For the stations that may be added
to the already open station, we take a list length L that

is determined by multiplying the length of the whole
sorted list by a random factor from the range [0.7, 1.0].
For the improvement phase of the location planning
algorithm, we set the iterator that counts the number
of unsuccessful iterations to 10. Additionally, we set
a time limit of 1 hour for the improvement phase, in
case the iterator was not hit within that time. With these
configurations of the overall algorithm, we achieve, on
average, a runtime of about 6.5 hours.

6.1.3. Computational results
The results are given in Table 1 to Table 6, each table
belonging to one of the instance classes C1, C2, R1,
R2, RC1, and RC2.
The first column shows the instance name, with the

first part of the name referring to the original instance
name from Solomon (1987). The middle part of the
name refers to the number of customers, and the last
part references the number of potential locker box
stations. Then, the average total cost values over 5 runs
are reported for each strategy and instance. A value in
italics means that this strategy performed, on average,
the worst for the respective instance. A bold value
means that this strategy performed best, on average,
over the 5 runs. The last three rows of each table give
performance measures for each strategy aggregated
over the whole instance set. The row “#best” reports
how often a strategy was best in the respective instance
set and the row “#worst” shows how often a strategy led
to the worst result. The row “avg.” states the average
values over all instances of the set for each strategy.
We can see that for the clustered instances C1, the

k-means clustering strategy clearly dominates the other
strategies. It yields the lowest average total cost of 800.3
and is never the worst strategy, but the best strategy in 6
out of 9 cases. “Fixed grid” works very poorly, having
a significantly higher total cost of 819.6, never the best
strategy, but the worst one in 6 out of 9 cases. For the
clustered instances C2, “k-means” performs very well.
It yields the lowest average total cost of 568.5 and is
the best strategy for half the instances and only once
the worst.

instance random fixed grid random grid k-means
C101 100 9 821.5 820.8 818.7 799.7
C102 100 9 816.5 819.3 805.8 790.4
C103 100 9 784.5 817.0 803.3 807.9
C104 100 9 807.6 810.7 797.6 795.7
C105 100 9 823.1 820.0 785.5 803.2
C106 100 9 806.2 823.2 829.8 801.6
C107 100 9 793.5 817.5 786.7 796.4
C108 100 9 809.4 828.4 813.1 807.7
C109 100 9 804.8 818.7 779.3 770.3
#best 1 0 2 6
#worst 2 6 1 0
avg. 807.8 819.6 805.1 800.3

Table 1: Comparison of location generation strategies for the instance set C1
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“Fixed grid” is also the worst strategy for the C2 set,
since it leads to the highest objective value of 579.8 and
is the best strategy for none of the instances in this set.
For the C1 instances, we have an average runtime of 5.6
hours. For the C2 instances, it is 5.4 hours.
For the random instances R1, the random grid strategy

works best on average (total cost 938.8), with only a
small gap to the clustering strategy (939.2). Moreover,
the clustering strategy is never the worst strategy in
the set. Distributing the locker box location by means
of fixed grid gives very poor results for R1: average
total cost of 979.2 and never the best strategy but the

worst in 9 out of 12 cases. For the random instances
R2, the clustering strategy works best on average (total
cost 780.1), but “random grid” is second (781.3) only
with a small gap to the leading strategy “k-means”.
The reason the random grid strategy performs quite
well for a randomly distributed customer set may lie in
the number of potential stations. The more stations we
have to generate, the finer the grid structure becomes
and, together with the random part, this may yield on
average a quite good coverage of the customer area. The
average runtime of the R1 instance set is 7.2 hours; for
the R2 set, it is 6.4 hours.

instance random fixed grid random grid k-means
C201 100 9 572.8 579.0 580.0 580.7
C202 100 9 546.4 577.9 558.0 575.8
C203 100 9 569.7 580.5 597.7 545.9
C204 100 9 583.6 580.1 569.2 563.0
C205 100 9 582.0 581.2 584.7 568.8
C206 100 9 589.5 580.7 570.3 571.5
C207 100 9 583.3 579.2 587.1 566.5
C208 100 9 560.7 580.1 574.6 575.6
#best 3 0 1 4
#worst 2 2 3 1
avg. 573.5 579.8 577.7 568.5

instance random fixed grid random grid k-means
R101 100 9 1029.3 1107.6 1125.0 1079.1
R102 100 9 1003.0 1066.3 979.0 1020.4
R103 100 9 1048.6 976.9 920.5 963.9
R104 100 9 906.9 909.3 851.1 858.5
R105 100 9 937.2 1061.3 1000.0 1015.0
R106 100 9 1005.7 1014.1 985.7 973.4
R107 100 9 893.2 946.8 877.9 923.4
R108 100 9 812.4 897.6 896.2 844.6
R109 100 9 981.4 965.1 1004.1 929.7
R110 100 9 944.8 954.9 894.2 908.7
R111 100 9 908.3 951.9 896.7 896.3
R112 100 9 839.2 898.5 834.6 857.4
#best 3 0 6 3
#worst 1 9 2 0
avg. 942.5 979.2 938.8 939.2

Table 2: Comparison of location generation strategies for the instance set C2

Table 3: Comparison of location generation strategies for the instance set R1
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For the random-clustered instances RC1, the fixed
grid strategy leads to the best average total cost value
of 1132.5. However, “k-means” is close to it with an
average total cost value of 1135.1 and also regarding the
counts of how often it was best and worst. Distributing
the potential locker box stations purely randomly gives
very bad results for the RC1 instances. For the RC2
instances, the clustering strategy dominates the others –
it shows the lowest average total cost of 926.8. Further,

it is never the worst strategy and in half of the cases,
it is the best one. The instances of set RC1 need on
average 7.2 hours computational time and the instances
of RC2 on average 6.2 hours. Concerning runtime,
we can observe that over the instance sets, the ones
with wider time windows (C2, R2, RC2) have a lower
runtime than those with tighter time windows (C1, R1,
RC1), which can be justified by the fact that problems
with tight time windows are, in general, harder to solve.

instance random fixed grid random grid k-means
R201 100 9 929.0 948.0 897.5 916.1
R202 100 9 879.4 880.3 825.7 827.5
R203 100 9 775.6 785.2 764.7 779.7
R204 100 9 701.6 720.5 701.2 694.3
R205 100 9 857.3 871.8 812.4 839.8
R206 100 9 769.7 805.6 831.5 784.4
R207 100 9 728.1 752.2 766.3 749.7
R208 100 9 679.1 696.3 698.7 679.7
R209 100 9 745.3 810.3 777.9 787.2
R210 100 9 861.1 821.6 793.2 798.2
R211 100 9 725.2 747.9 724.7 724.2
#best 4 0 5 2
#worst 1 7 3 0
avg. 786.5 803.6 781.3 780.1

instance random fixed grid random grid k-means
RC101 100 9 1404.7 1237.7 1257.1 1292.6
RC102 100 9 1221.1 1183.6 1160.6 1202.0
RC103 100 9 1149.2 1129.6 1134.3 1092.1
RC104 100 9 1022.2 1002.4 1048.0 995.5
RC105 100 9 1447.4 1205.4 1330.1 1227.9
RC106 100 9 1278.1 1168.7 1063.9 1184.9
RC107 100 9 1184.4 1093.0 1113.0 1081.7
RC108 100 9 1034.2 1039.8 993.0 1004.1
#best 0 2 3 3
#worst 6 1 1 0
avg. 1217.6 1132.5 1137.5 1135.1

Table 4: Comparison of location generation strategies for the instance set R2

Table 5: Comparison of location generation strategies for the instance set RC1

Overall, we conclude that locating potential locker
box stations by clustering through the k-means
algorithm is the most suitable and stable strategy, since
it is clearly the best strategy for 3 of the 6 instance sets,
and not much worse than the best strategy or slightly
the best strategy in the other three 3 cases. So, it seems
that with the clustering approach for locker box nodes,
a variety of geographical characteristics at the side of
customer nodes can be captured.

We have previously mentioned that, when we had to
decide the cost parameters for the C1 and C2 instances,
we observed how tighter or wider time windows
influence the attractiveness of locker box service
(attractiveness from a routing planner’s perspective).
This observation is supported by the numbers given
in Table 7.
The column “#LB customers” states the number

of customers served at a locker box (out of the 100
customers; the remaining ones are served at their home
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address). The value is the average over all instances
from the respective set. The column “#open stations”
reports the average number of stations to be opened
and used for locker box delivery. For the R and RC
instances, we can see that for the instance sets with
wider time windows (R2 and RC2), on average less
customers are served at locker boxes and less stations
are opened compared to the instance set with tighter
time windows (R1 and RC1). To explain, in the R2
instances, 50.9 customers on average are served at
locker boxes and 2.1 stations are used, compared to
the R1 instances, where 71.9 customers are served on
average at locker boxes and 2.8 stations are used. In
the RC2 instances, we have 42.3 locker box customers
on average and 2.1 used stations, compared to the RC1
instances with 59.1 locker box customers and 2.7 used
stations. An explanation for this outcome has been
given previously when justifying a lower compensation
cost value for C2. For the instances R1 and R2, the
comparison of these two measures is valid, since
cost parameters are the same for both sets. The same
holds true for sets RC1 and RC2. For C1 and C2, the
values are not significantly different, but comparison
in this case is difficult since different values for the
compensation cost parameter were used.

6.2. Compare methods: MIP and
metaheuristic solution method

We now want to use the MIP presented in 3 and the
metaheuristic solution method presented in 4 to solve

a set of self-generated test instances and to compare
their performance with respect to solution quality and
computational time.

6.2.1. Test instances
In the self-generated instances all nodes are distributed
within a square of size [30 × 30]. The depot node is
located in the middle of the southern edge. The
customer nodes are distributed randomly across
the area. Instances with 10, 12, 15, 17, 20, 22, and
25 customers are generated. The experiments in the
preceding section have shown that, on average, the
k-means strategy works best for distributing the locker
box locations. Thus, we use this strategy here. Instances
with 5 potential locker box stations are generated.
Distances between two nodes are calculated based on
Euclidean metrics. The time window for the depot node
is set to [0, 720]. This implies that a maximum tour
duration of 720 minutes (12 hours) is assumed. The
same time window is set for the locker box stations. The
length of the customers’ time windows is assumed to be
1 hour, and a time window can only start at clock hour.
The service time of the customers is fixed to 9 minutes
and that of the locker box stations to 20 minutes.
For the customers, demand data also need to be

generated. We assume that each customer has a positive
demand in at least one period. Service in more than
one period or in all periods may also be required. The
decision of whether a customer has a demand in a certain
period is taken based on a probability distribution,

instance random fixed grid random grid k-means
RC201 100 9 1076.7 1100.0 1067.4 1096.2
RC202 100 9 996.1 972.8 1008.1 977.3
RC203 100 9 871.1 881.0 901.3 868.7
RC204 100 9 776.2 756.0 753.3 745.4
RC205 100 9 1058.4 1043.7 1052.6 1026.6
RC206 100 9 975.8 997.5 955.3 991.1
RC207 100 9 896.3 940.0 910.3 921.2
RC208 100 9 800.1 802.0 797.9 787.8
#best 1 1 2 4
#worst 2 4 2 0
avg. 931.3 936.6 930.8 926.8

Table 6: Comparison of location generation strategies for the instance set RC2

Table 7: Locker box utilization

# LB customers # open stations
C1 27.5 1.4
C2 30.2 1.5
R1 71.9 2.8
R2 50.9 2.1

RC1 59.1 2.7
RC2 42.3 2.1
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The results for the 1-period problem in Table 8
demonstrate that for 32 out of 35 instances, the MIP
yielded the optimal solution within the given time
limit of 10 hours. For almost all of these instances, the
metaheuristic also found the optimal solution in the
best case. On average, we have in the best case a gap
of −0.08%, and in the worst case a gap of 0.10%. For
the average solution cost, we have on average a gap of
−0.04%. Therefore, the metaheuristic performs really
well with respect to solution quality for the 1-period
problem. With respect to computational time, we can
see that for the smaller instances – and in some cases
for larger ones – the MIP is even slightly faster than
the metaheuristic method. However, for one of the 20
customers’ instances, the MIP exceeded the time limit,
while the metaheuristic needed only about 2 minutes to
yield an even better solution. Hence, there is no doubt
that the metaheuristic clearly outperforms the MIP in
terms of runtime for increasing problem size.
This also becomes obvious in Table 9, which shows

the results for the 2-period problem. There, none of
the 25 customers’ instances could be solved to proven
optimality by using the MIP and predefined time limit.
For the next smaller size category of 22 customers,
only 1 out of 5 instances could be solved to optimality.
Conversely, for the metaheuristic method, we still
have an average runtime of not even 3 minutes over all
results. Concerning solution quality, we can see that
the best metaheuristic solution is worse than the BKS
from the MIP in only two cases. On average, the best
metaheuristic solutions have a gap of −0.07% from the
BKS, the worst metaheuristic solutions have a gap of
0.14%, and the average values a gap of 0.01%. This
shows that the metaheuristic gives very good results
even for a 2-period problem.
The results for the 3-period problem are reported

in Table 10. With an increasing number of planning
periods, the complexity of the model increases, as
reflected in the computational effort of the MIP. For the
3-period problem, one of the 12 customers’ instances
breached the time limit. For the 20 customers’ instances,
the MIP did not provide a proven optimal solution.
For the computational time of the metaheuristic, no
significant change could be observed in case of 3
periods. The average value is lower than that of the
2-period problem, but this can be traced to the fact that
the 22 and 25 customers’ instances are not in the list
any more, and thus their runtime value is not considered
in the average value. The good performance of the
metaheuristic with respect to solution quality is also
confirmed for the 3-period problem. In the best case,
we have, on average, a deviation of only 0.03% to the
BKS, in the worst case a deviation of 0.35%, and in the
average case 0.16%.

6.3. Algorithm design
Our metaheuristic designed for the location routing
problem in this work comprises several components
as presented in Section 4. Since we face a complex

which gives “yes demand” with 70% probability and
“no demand” with 30% probability. Consequently, on
average, about 70% of the customers in each period
show a positive demand and have to be served. When
a customer has a demand in a certain period, a demand
of 1 parcel appears with 70% probability, a demand of 2
parcels with 20% probability, and a demand of 3 parcels
with 10% probability. Service can happen at the home
address or at an accepted locker box station. We assume
that a customer accepts all stations located within a
predefined radius ρ from the home address. We choose
this parameter to be 10, since this value is one-third
the value 30 from the extended Solomon instances,
preserving roughly the relation between the ranges of
the nodes coordinates (30 to 100). For the locker box
stations, we assume that there is a unit-size capacity of
25 slots available in each period. We set the site cost
of each station to 20. The computational experiments
have shown that with this value, we obtain a reasonable
solution with respect to locker box utilization. The
parameter c, which represents the compensation cost
for serving a customer at a locker box, is set to 5 as
suggested in Grabenschweiger et al. (2021).
We generate instances for a problem with 1,2, and 3

periods, respectively.
Depending on the availability of data or on the

purpose of the problem to analyze, one can choose
the number of periods properly. Theoretically, the
model allows for any number of T periods. However,
limitations arise from a computational point of view,
since every period adds additional complexity to the
MIP or for the metaheuristic. To compare the different
solution methods, we came up with 1, 2, and 3 periods to
consider in order to explore computational performance
and solution quality.

6.2.2. Computational results
The results are given in Table 8, Table 9, and Table
10, respectively. The name of an instance is given
in the first column in the form X_Y_Z, where X, Y,
and Z denote the number of customers, the number of
potential locker box stations, and the instance number.
Then, the total cost of the solution found by the MIP
within the given time limit of 10 hours is reported. If
the time limit is not breached, this is considered the
optimal solution; otherwise, it is referred to as the best
known solution (BKS). The computational time in
seconds is the third column in the table. A breach of
the predefined time limit is indicated by “time limit”.
For the metaheuristic method, 5 runs were executed
for each instance. The columns f avg, f best, and f worst
show the average, best, and worst solution over the
performed runs, respectively. The information given
by gapavg, gapbest, and gapworst refers to the percentage
gap from the corresponding f to the BKS found by the
MIP. t avg reports the average computational time in
seconds. The last row in each table gives the average
values over all instances for the information belonging
to the metaheuristic.
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improvement phase comprises here also the modified
ADD (described in Section 4.3), since this is also a
kind of improvement step, together with the other three
improvement operators: add, drop, and swap (described
in Sections 4.4.1 to 4.4.3). Below, we analyze how the
solution quality and runtime change when we turn
off the improvement phase. The calculations are done
based on the experiments from Section 6.2.
In Section 6.2, we tested instances with 1, 2, and 3

periods. Here, we consolidate the results with respect
to the number of periods. For example, the first line
gives the average cost and runtime of all 1-period
instances. Concerning runtime, we see that the runtime
reduces when we do not run the improvement phase.

problem and the computational times are high, it
is important to check whether all components are
indeed useful and necessary. First, we investigate
how the improvement phase in the location algorithm
contributes to the solution quality. Then, we evaluate
different settings for the parameters used in the location
heuristics. Finally, we consider a possible method
for reducing the computational time in case of large
instances.

6.3.1. Contribution of improvement phase
One component of the metaheuristic is the improvement
phase, where a possibly better re-selection of locker
box locations should be found. The scope of the

instance MIP BKS tMIP (s) favg fbest fworst gapavg gapbest gapworst tavg (s)
10 5 1 108.48 3.16 108.48 108.48 108.48 0.00% 0.00% 0.00% 14.88
10 5 2 156.7 19.28 156.70 156.70 156.70 0.00% 0.00% 0.00% 32.57
10 5 3 149.38 10.81 149.38 149.38 149.38 0.00% 0.00% 0.00% 19.04
10 5 4 163.38 4.71 163.41 163.38 163.54 0.02% 0.00% 0.10% 20.48
10 5 5 117.66 5.76 117.66 117.66 117.66 0.00% 0.00% 0.00% 15.95
12 5 1 131.11 5.72 131.11 131.11 131.11 0.00% 0.00% 0.00% 24.12
12 5 2 157.53 5.73 158.07 157.53 160.02 0.34% 0.00% 1.58% 35.95
12 5 3 171.26 79.48 171.26 171.26 171.26 0.00% 0.00% 0.00% 16.68
12 5 4 159.62 173.35 159.62 159.62 159.62 0.00% 0.00% 0.00% 26.32
12 5 5 144.29 38.51 144.29 144.29 144.29 0.00% 0.00% 0.00% 23.46
15 5 1 157.25 30.82 157.25 157.25 157.25 0.00% 0.00% 0.00% 57.56
15 5 2 202.04 396.18 202.04 202.04 202.04 0.00% 0.00% 0.00% 40.06
15 5 3 147.84 62.19 147.84 147.84 147.84 0.00% 0.00% 0.00% 51.39
15 5 4 153.58 3079.10 153.58 153.58 153.58 0.00% 0.00% 0.00% 65.68
15 5 5 186.39 473.37 186.39 186.39 186.39 0.00% 0.00% 0.00% 54.14
17 5 1 173.99 30.38 174.07 174.07 174.07 0.05% 0.05% 0.05% 55.06
17 5 2 178.19 53.79 178.19 178.19 178.19 0.00% 0.00% 0.00% 60.66
17 5 3 196.17 152.48 196.17 196.17 196.17 0.00% 0.00% 0.00% 180.93
17 5 4 189.43 204.96 190.07 189.43 192.61 0.34% 0.00% 1.68% 162.08
17 5 5 189.37 489.29 189.41 189.37 189.58 0.02% 0.00% 0.11% 54.16
20 5 1 184.69 2664.26 184.69 184.69 184.69 0.00% 0.00% 0.00% 32.27
20 5 2 193.34 101.38 193.62 193.34 194.74 0.14% 0.00% 0.72% 197.21
20 5 3 188.39 114.99 188.83 188.39 189.48 0.23% 0.00% 0.58% 171.63
20 5 4 202.26 time limit 195.55 195.55 195.55 -3.32% -3.32% -3.32% 120.10
20 5 5 219.51 5287.48 219.61 219.51 219.63 0.04% 0.00% 0.05% 182.46
22 5 1 200.94 2594.96 200.94 200.94 200.94 0.00% 0.00% 0.00% 169.64
22 5 2 245.17 2130.97 245.17 245.17 245.17 0.00% 0.00% 0.00% 162.84
22 5 3 218.89 2686.64 218.89 218.89 218.89 0.00% 0.00% 0.00% 181.28
22 5 4 201.96 255.91 201.96 201.96 201.96 0.00% 0.00% 0.00% 343.39
22 5 5 212.54 2067.72 212.54 212.54 212.54 0.00% 0.00% 0.00% 199.72
25 5 1 219.44 1361.43 219.55 219.44 220.00 0.05% 0.00% 0.26% 504.05
25 5 2 227.93 time limit 228.49 227.93 229.58 0.24% 0.00% 0.72% 207.02
25 5 3 243.58 2937.65 243.58 243.58 243.58 0.00% 0.00% 0.00% 211.92
25 5 4 240.69 time limit 241.94 241.77 242.60 0.52% 0.45% 0.79% 436.77
25 5 5 228.19 20876.70 228.19 228.19 228.19 0.00% 0.00% 0.00% 445.72

184.53 184.45 184.78 -0.04% -0.08% 0.10% 130.78

Table 8: Comparison of MIP and metaheuristic (1-period problem)
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For the purpose of benchmarking the heuristic
solutions to the optimal or best known MIP solutions,
more importance is given to the solution quality than
to runtime. Thus, the improvement phase is important
in this case.

6.3.2. Parameter analysis
The metaheuristic solution method presented in Section
4 contains various parameters. Below, we do an analysis
on two of them, where the experiments from Section
6.2 are used as a base case (see Tables 8 – 10).
In the modified ADD algorithm (described in Section

4.3), we have to decide about the number of promising
stations that we open in the first iteration, what can be

Concerning solution quality, we observe a deterioration.
For the 1-period instances it is, on average, 19% worse,
while for the 3-period instances it is already worse by
39%. When we look at the average number of open
stations across the respective instance set, we see that
with an increasing number of periods, more stations
have to be opened (which is logical, since with more
periods you face more different scenarios in which to
serve customers efficiently). With more open stations,
there are more possibilities for choosing correctly
or incorrectly. Consequently, the more open stations
there are, the more important the improvement phase
becomes.

instance MIP BKS tMIP (s) favg fbest fworst gapavg gapbest gapworst tavg (s)
10 5 1 228.59 38.45 228.59 228.59 228.59 0.00% 0.00% 0.00% 13.99
10 5 2 230.33 119.32 230.92 230.33 232.19 0.26% 0.00% 0.81% 24.86
10 5 3 172.84 96.68 173.82 172.84 174.47 0.57% 0.00% 0.94% 21.92
10 5 4 188.67 3.46 188.67 188.67 188.67 0.00% 0.00% 0.00% 22.17
10 5 5 161.78 14.21 161.78 161.78 161.78 0.00% 0.00% 0.00% 13.91
12 5 1 187.70 87.71 187.70 187.70 187.70 0.00% 0.00% 0.00% 26.51
12 5 2 229.84 75.72 229.84 229.84 229.84 0.00% 0.00% 0.00% 21.30
12 5 3 239.54 63.43 239.54 239.54 239.54 0.00% 0.00% 0.00% 35.29
12 5 4 261.53 77.54 262.27 261.53 263.38 0.28% 0.00% 0.71% 43.09
12 5 5 210.72 161.41 210.72 210.72 210.72 0.00% 0.00% 0.00% 33.62
15 5 1 259.60 431.90 259.60 259.60 259.60 0.00% 0.00% 0.00% 44.19
15 5 2 280.16 time limit 281.54 281.50 281.56 0.49% 0.48% 0.50% 81.13
15 5 3 246.94 325.02 246.97 246.94 247.11 0.01% 0.00% 0.07% 38.28
15 5 4 264.51 1629.95 264.51 264.51 264.51 0.00% 0.00% 0.00% 85.36
15 5 5 287.01 2435.53 287.01 287.01 287.01 0.00% 0.00% 0.00% 73.62
17 5 1 312.61 28159.30 312.95 312.61 313.18 0.11% 0.00% 0.18% 118.08
17 5 2 254.07 2327.78 254.07 254.07 254.07 0.00% 0.00% 0.00% 73.52
17 5 3 305.85 4330.99 305.85 305.85 305.85 0.00% 0.00% 0.00% 146.16
17 5 4 284.69 1349.41 284.69 284.69 284.69 0.00% 0.00% 0.00% 72.60
17 5 5 281.92 3004.08 281.92 281.92 281.92 0.00% 0.00% 0.00% 55.18
20 5 1 324.44 949.84 324.90 324.44 326.26 0.14% 0.00% 0.56% 361.10
20 5 2 329.40 5780.62 329.40 329.40 329.40 0.00% 0.00% 0.00% 229.73
20 5 3 301.43 23321.10 301.43 301.43 301.43 0.00% 0.00% 0.00% 158.18
20 5 4 300.89 12874.10 300.89 300.89 300.89 0.00% 0.00% 0.00% 315.35
20 5 5 259.02 1580.35 259.61 259.02 261.96 0.23% 0.00% 1.14% 170.73
22 5 1 344.94 time limit 347.37 344.94 347.98 0.71% 0.00% 0.88% 195.18
22 5 2 330.33 3567.46 330.38 330.33 330.56 0.01% 0.00% 0.07% 214.75
22 5 3 319.33 time limit 319.33 319.33 319.33 0.00% 0.00% 0.00% 350.55
22 5 4 273.44 time limit 273.82 273.82 273.82 0.14% 0.14% 0.14% 300.35
22 5 5 359.19 time limit 359.19 359.19 359.19 0.00% 0.00% 0.00% 547.41
25 5 1 306.96 time limit 306.75 306.44 306.96 -0.07% -0.17% 0.00% 551.87
25 5 2 334.05 time limit 334.05 334.05 334.05 0.00% 0.00% 0.00% 460.14
25 5 3 346.55 time limit 346.49 345.72 349.58 -0.02% -0.24% 0.87% 428.69
25 5 4 340.65 time limit 340.65 340.65 340.65 0.00% 0.00% 0.00% 340.87
25 5 5 329.23 time limit 321.01 320.27 323.08 -2.50% -2.72% -1.87% 334.56

276.81 276.58 277.19 0.01% -0.07% 0.14% 171.55

Table 9: Comparison of MIP and metaheuristic (2-period problem)
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using lower values for the intervals. This restricts the
modified ADD in the sense that fewer possibilities for
opening and combining stations are available.
To analyze the impact of these parameter changes, we

run the metaheuristic method once by using [0.0, 0.2]
and [0.2, 0.5] as range intervals, and once with [0.2,
0.4] and [0.4, 0.7].
In Table 12, we can see that the solutions are up to

0.18% worse compared to the base case. One could
assume that the computational time should decrease,
when the solution space for the modified ADD is
reduced and less effort is made in this step. However,
we observe an increase in total average runtime. A
possible reason for this could be that more effort has

interpreted as the list lengthL of the restricted candidate
list.
The length of the restricted candidate list L is

obtained by multiplying the length of the sorted station
list (sorted by increasing objective value) by a random
factor from a certain interval. In the base case of
Section 6.2, this interval was chosen to be [0.4, 0.6].
Furthermore, when we evaluate which stations should
be added to the already open stations, we consider only
a subset of promising stations, giving another restricted
candidate list. The length of the list is obtained as
before. In the base case the interval for the random
factor is [0.7, 1.0]. For the experiments in this part,
the idea is to shorten the restricted candidate lists by

instance MIP BKS tMIP (s) favg fbest fworst gapavg gapbest gapworst tavg (s)
10 5 1 340.87 1820.12 340.87 340.87 340.87 0.00% 0.00% 0.00% 27.87
10 5 2 274.60 379.73 276.57 274.60 277.55 0.72% 0.00% 1.07% 23.66
10 5 3 302.73 13784.30 302.73 302.73 302.73 0.00% 0.00% 0.00% 25.24
10 5 4 276.96 6045.97 277.53 276.96 277.95 0.20% 0.00% 0.36% 32.53
10 5 5 344.88 1351.24 344.88 344.88 344.88 0.00% 0.00% 0.00% 33.78
12 5 1 368.43 3045.49 368.80 368.43 370.26 0.10% 0.00% 0.50% 42.92
12 5 2 362.69 3049.87 363.99 363.99 363.99 0.36% 0.36% 0.36% 46.25
12 5 3 356.13 833.23 358.87 356.13 359.56 0.77% 0.00% 0.96% 42.11
12 5 4 268.64 420.63 268.76 268.64 269.23 0.04% 0.00% 0.22% 34.16
12 5 5 340.67 time limit 341.26 340.67 341.66 0.17% 0.00% 0.29% 46.59
15 5 1 304.20 1762.58 304.20 304.20 304.20 0.00% 0.00% 0.00% 61.79
15 5 2 372.20 20707.50 375.35 375.35 375.35 0.85% 0.85% 0.85% 271.95
15 5 3 392.81 9285.06 392.81 392.81 392.81 0.00% 0.00% 0.00% 188.60
15 5 4 335.72 time limit 332.66 332.66 332.66 -0.91% -0.91% -0.91% 99.36
15 5 5 378.47 time limit 384.32 383.01 387.16 1.55% 1.20% 2.30% 210.26
17 5 1 398.78 4288.88 399.34 398.78 400.26 0.14% 0.00% 0.37% 223.13
17 5 2 345.07 time limit 339.76 339.73 339.86 -1.54% -1.55% -1.51% 340.98
17 5 3 409.72 14254.80 414.56 414.53 414.60 1.18% 1.17% 1.19% 151.80
17 5 4 360.47 25023.20 360.47 360.47 360.47 0.00% 0.00% 0.00% 162.15
17 5 5 424.53 time limit 425.04 424.53 427.07 0.12% 0.00% 0.60% 104.90
20 5 1 430.05 time limit 427.26 427.26 427.26 -0.65% -0.65% -0.65% 247.59
20 5 2 372.33 time limit 372.07 371.25 375.23 -0.07% -0.29% 0.78% 105.78
20 5 3 428.53 time limit 429.49 428.53 433.35 0.22% 0.00% 1.12% 319.66
20 5 4 395.52 time limit 395.52 395.52 395.52 0.00% 0.00% 0.00% 325.22
20 5 5 467.89 time limit 471.46 470.52 471.96 0.76% 0.56% 0.87% 260.32

362.74 362.28 363.46 0.16% 0.03% 0.35% 137.14

improve on (base case) improve off gap
instances favg tavg (s) # open stations favg tavg (s) f t
1 period 184.53 130.78 1.49 184.82 32.50 0.19% -71.08%
2 periods 276.81 171.55 1.97 277.45 46.39 0.26% -72.96%
3 periods 362.74 137.14 1.88 364.15 29.43 0.39% -77.34%
avg. 274.69 146.49 1.78 275.47 36.11 0.28% -73.79%

Table 10: Comparison of MIP and metaheuristic (3-period problem)

Table 11: Contribution of improvement phase
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Table 12: Parameter analysis for the restricted candidate list in the modified ADD

base case [0.0,0.2] and [0.2,0.5] [0.2,0.4] and [0.4,0.7]
instances favg tavg (s) favg tavg (s) f gap t gap favg tavg (s) f gap t gap
1 period 184.53 130.78 184.86 171.55 0.18% 31.17% 184.79 182.86 0.14% 39.83%
2 periods 276.81 171.55 277.30 231.37 0.18% 34.87% 277.17 212.20 0.13% 23.70%
3 periods 362.74 137.14 362.95 184.74 0.06% 34.70% 362.98 160.47 0.07% 17.01%
avg. 274.69 146.49 275.04 195.88 0.14% 33.58% 274.98 185.18 0.11% 26.84%
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reduce the number of iterations in the ALNS of the
location heuristics to reduce total runtime. When we
find a new best selection of locker locations, the routing
is optimized with the usual ALNS iteration settings.
We then analyze how the solution quality changes

in relation to the results we obtained in Section 6.1
(see Tables 1 – 6). Note: We use those instances for
comparison, where k-means strategy was used for
distributing locker station, since this strategy has
proven to perform overall very well.
The results in Table 14 show that the runtime can

be reduced substantially when a faster procedure for
the routing part is used in the location heuristics. On
average, the runtime is now 1.76 hours compared to
6.33 from the base case of Section 6.1. However, this
comes at the cost of solution quality, where an average
deterioration of 3.76% can be observed.
With the experiments in Section 6.1 we compared the

four different data generation concepts based on the 100
customers Solomon instances (extended for our model).
For this, we put more emphasis on solution quality, to
have a rather meaningful comparison, while an average
runtime of 6.33 hours was considered acceptable.
However, if you want to solve bigger instances or apply
the method in a real-world setting, a lower runtime
might be of more importance.

7. CONCLUSION

We presented the MPLRPLB as a relevant problem
for research as well as for practice. A description of
the MPLRPLB was given, followed by a complete
MIP formulation. In the MPLRPLB, a set of potential
locations for locker box stations is given as input.
Within the model, the locations to be realized must be
determined. Realizing a station comes at a cost that is
added to the total cost of routing and compensation.
Routing and delivery decisions have to be made in
every period, while the decision of which stations to
open is made only once within the multiple periods.
To solve the problem, we developed a metaheuristic

solution method that basically evaluates different
configurations of open and closed stations. For a
certain setting of open/closed stations, the solution

to be spent on the improvement phase (where the add,
drop and swap operators are executed), when less effort
is spent on the modified ADD.
Another parameter, that has to be determined in the

metaheuristic method for the MPLRPLB, is the iterator
in the improvement phase, that is used as a termination
criterion by counting the number of unsuccessful
iterations. We did experiments with varying values for
this iterator.
Based on Table 13, we can conclude that the solution

quality decreases with a lower value for the iterator.
For a value of 7 the solutions across all instances
are, on average, 0.05% worse compared to the base
case (iterator value 10). For 5 iterations the average
deterioration is 0.10% and for 3 iterations it is 0.12%.
Moreover, we can observe that the runtime decreases,
since the improvement phase terminates earlier when
the iterator is set to a lower value. For the lowest
value, which is 3 iterations, the runtime is on average
decreased by 36.92%.
As a result of this parameter analysis, we can conclude

that for practical purposes, computational time could
be saved by choosing a small iterator at rather low cost.
However, when evaluating different location strategies,
a more precise estimation of the costs is important so
that these results were based on 10 iterations.

6.3.3 Runtime analysis
In Section 6.1, we see that for the 100 customer Solomon
instances, the metaheuristic method takes more than
5 hours on average. To keep the computational time
within boundaries, we levied some runtime restrictions:
the algorithm for the 1-period problem was performed
with a runtime time limit of 10 minutes and the
improvement phase of the location selection was
performed with a runtime limit of 1 hour.
To further reduce the computational time of the

instances, the idea now is to run the routing part in the
location heuristics faster. ALNS is used to find a good
routing solution. Depending on how many destroy-
repair iterations there are, there is a trade-off between
solution quality and runtime. In the location heuristics
of our overall method, it is maybe sufficient to have
only an estimation of a routing solution when evaluating
whether a locker location is beneficial. Hence, we

base case estimator for routing gap
instances favg tavg (h) favg tavg (h) f t
C1 796.99 5.60 811.13 2.03 1.77% -63.70%
C2 568.46 5.40 593.34 0.79 4.38% -85.29%
R1 939.20 7.20 971.62 2.19 3.45% -69.63%
R2 780.06 6.40 825.37 1.77 5.81% -72.31%
RC1 1135.11 7.20 1160.45 2.15 2.23% -70.19%
RC2 926.79 6.20 967.55 1.65 4.40% -73.37%
avg. 857.77 6.33 888.24 1.76 3.67% -72.42%

Table 14: Use an estimator as speed-up for routing part in location heuristics
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locker box delivery. For this, we used the number of
locker box customers and of used stations to assess
locker box utilization. The outcome was that locker box
delivery is used more when time windows are tighter.
The reason for that may lie in the fact that efficient
routing of customers is difficult when they should be
served at home during the time window and the time
windows are short. Hence, in this case, the possibility
of locker box delivery provides more potential to
increase efficiency.
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